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KrustyLoader - About stripped Rust symbol recovery
nofix.re/posts/2024-11-02-rust-symbs/

Feb 10, 2024

I have been writing a tool to automate most of the work presented in this blog post. It is
available here and provided with absolutly no guarantees. This is just me writing some
stuff to help with my daily reverse engineering.

Recently, Ivanti disclosed two critical zero-day vulnerabilities affecting their Connect Secure
VPN product. It seems that threat actors have been actively exploiting those in the wild.

Synacktiv did an excellent job with a quick dynamic reverse engineering, and gave samples
hashes. I wanted to give static analysis a shot to delve deeper into Rust internals, and learn
more about Rust reverse engineering.

Krustyloader uses Tokio, a popular crate for asynchronous development. Statically reverse
engineer such code without any symbols is a challenging task : Tokio has complex code that
provides a custom runtime with its own internals tricks to learn about.

I have been interested in recovering symbols from stripped Rust executables for a little while
now, and it is not common to find malware written in Rust. This seemed like a good
opportunity to work on Rust symbols recovery.

A common theme in reverse engineering is generating signatures for libraries used in your
target executable to distinguish library code from non-library code. This is typically done by
recompiling those libraries with the same compile options used in the target and signing the
result with a suitable tool, such as IDA’s sigmake or Binary Ninja’s sigkit.

This is how I started my reverse engineering journey of this Rust payload.

Rust artifacts

First step of symbol recovery is knowing which compiler has been used, and what are the
dependencies.

A default cargo build --release leaves a lot of information into its target executable for us
to exploit:

rustc’s GitHub commit hash ;
each dependency name and version.

These are easily obtainable with a simple grep:

https://nofix.re/posts/2024-11-02-rust-symbs/
https://github.com/N0fix/rustbininfo
https://www.volexity.com/blog/2024/01/18/ivanti-connect-secure-vpn-exploitation-new-observations/
https://www.synacktiv.com/publications/krustyloader-rust-malware-linked-to-ivanti-connectsecure-compromises
https://crates.io/crates/tokio
https://tony612.github.io/tokio-internals/
https://hex-rays.com/products/ida/tech/flirt/in_depth/
https://binary.ninja/2020/03/11/signature-libraries.html
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$ grep -a rustc /tmp/sample

/rustc/90c541806f23a127002de5b4038be731ba1458ca/library/core/src/slice/iter.rsMap 
must not be polled after it returned


And just like that, we know that rustc’s hash used at compile time is :
90c541806f23a127002de5b4038be731ba1458ca.

Getting toolchain’s version

A query to GitHub shows us tags associated with rustc’s commit hash. Latest one should be
retained, in this case, 1.70.0.

Finding the correct toolchain

We also need to find the toolchain that has been used to compile the target (GNU, MUSL,
MinGW…).

I found no magic to easily find this information other than compiling myself executables with
different toolchains and compare the results to find heuristics.

In this case, it was straightforward to find the correct toolchain:

$ file /tmp/sample

/tmp/sample: ELF 64-bit LSB pie executable, x86-64, version 1 (SYSV), static-pie 
linked, stripped


$ ldd /tmp/sample 

       statically linked


The target is a statically compiled executable, likely using musl.

I assumed malware authors were lazy, thus opted for a solution that required minimal setup.
Checking rust’s platform support tiers reveals that x86_64-unknown-linux-musl is a “Tier 2
with Host tool” target, which means that it is a “guaranteed to build” toolchain, and is an easy
target to build to. Musl looks like the perfect candidate for our toolchain.

Putting the pieces together, we can guess it’s likely that the toolchain is 1.70.0-x86_64-
unknown-linux-musl.

Dependencies

A quick CTF-ish strings | grep is enough to find dependencies used in our target:

https://github.com/rust-lang/rust/branch_commits/90c541806f23a127002de5b4038be731ba1458ca
https://musl.libc.org/
https://doc.rust-lang.org/nightly/rustc/platform-support.html


3/12

$ s=$(strings /tmp/sample); echo "${s//registry/\n}" | grep -a '\.rs' | sort

/rustc/90c541806f23a127002de5b4038be731ba1458ca/library/alloc/src/collections/btree/m
ap/entry.rs [...more garbage...]

/rustc/90c541806f23a127002de5b4038be731ba1458ca/library/core/src/slice/iter.rs 
[...more garbage...]

/rustc/90c541806f23a127002de5b4038be731ba1458ca/library/core/src/sync/atomic.rs 
[...more garbage...]

/rustc/90c541806f23a127002de5b4038be731ba1458ca/library/std/src/io/mod.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/addr2line-0.17.0/src/function.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/aes-0.7.5/src/soft/fixslice64.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/bytes-1.4.0/src/buf/buf_impl.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/cfb-mode-0.7.1/src/lib.rs [...more garbage...]

/src/index.crates.io-6f17d22bba15001f/futures-channel-0.3.28/src/mpsc/mod.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/futures-util-
0.3.28/src/future/try_future/try_flatten.rs [...more garbage...]

/src/index.crates.io-6f17d22bba15001f/generic-array-0.14.7/src/lib.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/getrandom-0.2.10/src/util_libc.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/gimli-0.26.2/src/read/line.r [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/hashbrown-0.12.3/src/raw/mod.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/hex-0.4.3/src/lib.rs [...more garbage...]

/src/index.crates.io-6f17d22bba15001f/http-0.2.9/src/version.rs [...more garbage...]

/src/index.crates.io-6f17d22bba15001f/httparse-1.8.0/src/iter.rs [...more garbage...]

/src/index.crates.io-6f17d22bba15001f/httparse-1.8.0/src/lib.r [...more garbage...]

/src/index.crates.io-6f17d22bba15001f/hyper-0.14.27/src/body/body.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/miniz_oxide-0.5.3/src/inflate/output_buffer.rs 
[...more garbage...]

/src/index.crates.io-6f17d22bba15001f/num_cpus-1.15.0/src/linux.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/rand-0.8.5/src/rngs/thread.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/rand_chacha-0.3.1/src/guts.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/rustc-demangle-0.1.21/src/v0.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/socket2-0.4.9/src/socket.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/tokio-1.29.0/src/util/wake_list.rs [...more 
garbage...]

/src/index.crates.io-6f17d22bba15001f/want-0.3.1/src/lib.rs [...more garbage...]

These results have been edited for clarity sake.
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And now with a clean formating and a bit of automation:

$ rbi info target_sample.bin

TargetRustInfo(

   rustc_version='1.70.0',

   rustc_commit_hash='90c541806f23a127002de5b4038be731ba1458ca',

   dependencies=[

       Crate(name='addr2line', version='0.17.0', features=[], repository=None),
       Crate(name='aes', version='0.7.5', features=[], repository=None),

       Crate(name='bytes', version='1.4.0', features=[], repository=None),

       Crate(name='cfb-mode', version='0.7.1', features=[], repository=None),

       Crate(name='futures-channel', version='0.3.28', features=[], 
repository=None),

       Crate(name='futures-core', version='0.3.28', features=[], repository=None),

       Crate(name='futures-util', version='0.3.28', features=[], repository=None),

       Crate(name='generic-array', version='0.14.7', features=[], repository=None),

       Crate(name='getrandom', version='0.2.10', features=[], repository=None),
       Crate(name='gimli', version='0.26.2', features=[], repository=None),

       Crate(name='hashbrown', version='0.12.3', features=[], repository=None),
       Crate(name='hex', version='0.4.3', features=[], repository=None),

       Crate(name='http', version='0.2.9', features=[], repository=None),

       Crate(name='httparse', version='1.8.0', features=[], repository=None),

       Crate(name='hyper', version='0.14.27', features=[], repository=None),

       Crate(name='miniz_oxide', version='0.5.3', features=[], repository=None),

       Crate(name='num_cpus', version='1.15.0', features=[], repository=None),

       Crate(name='rand', version='0.8.5', features=[], repository=None),

       Crate(name='rand_chacha', version='0.3.1', features=[], repository=None),

       Crate(name='socket2', version='0.4.9', features=[], repository=None),

       Crate(name='tokio', version='1.29.0', features=[], repository=None),

       Crate(name='want', version='0.3.1', features=[], repository=None)

   ],

   guessed_toolchain='linux-musl',

   guess_is_debug_build=False

)


Building the dependencies

First, we have to install the toolchain:

$ apt-get install musl musl-dev musl-tools

$ rustup target add x86_64-unknown-linux-musl

$ rustup install 1.70.0-x86_64-unknown-linux-musl


Second, we have to download each dependency and compile it. An issue I faced when
compiling those is that I wanted to be able to automate the process on both Linux and
Windows, using IDA as a signature provider.

I quickly faced an issue since IDA/Hey-Rays’ pcf.exe only reads static .lib libraries (I
guess pelf works the same).
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Compiling staticlib Windows files from Rust didn’t seem to be an easy task to automate,
according to various linkage GitHub issues and StackOverflow posts I found across the
internet.

There might be ways of automatizing the build of Rust static libraries on Windows, but it
seemed like a tedious and error prone thing to do.

Instead, I choosed to use the great tool idb2pat from Mandiant, which, well, turns an IDB to a
.pat file, which is pattern file format used by IDA tools. This replaces the need of dealing
with pcf.exe/pelf complaining about file format of my compiled libraries.

I will be compiling every dependency as dynamic libraries.

To do so, we need to ensure the following lines exists in the Cargo.toml files of each
dependency we’re going to build:

[lib]

crate-type = ["dylib"] # Dynamic library


Since we want to compile as much of the available code in the crate as possible, I will be
enabling all features when possible:

rustup run 1.70.0-x86_64-unknown-linux-musl cargo build --release --lib --all-
features


Given that compiling with --all-features can lead to failures due to nightly or
unstable features on stable toolchains, I’ve incorporated some intelligence into the
automation to attempt compiling with as many features as possible.

Building with musl

Building with musl has constraints. First, it requieres getting MUSL compiled libraries, and
linking against them (which can be achieved by adding their location to LD_LIBRARY_PATH if
you are lazy enough not to deal with ldconfig).

Also, musl doesn’t support building dylib crate type unless you add the target-feature=-
crt-static compile flag, which disables the need of having a static runtime in the target lib.
You can do such a thing by exporting the following environnement variable: RUSTFLAGS='-C
target-feature=-crt-static'.

Since this defeats the purpose of building with a MUSL toolchain, I found it more convenient
to build with the GNU toolchain (1.70.0-x86_64-unknown-linux-gnu). It turned out that it
didn’t make much a difference anyway, as far as I could see in the generated assembly code.

Building the signature

https://github.com/mandiant/flare-ida/blob/master/python/flare/idb2pat.py
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Once every library has been built, we should be able to generate .pat files, using the
previously mentionned Mandiant’s idb2pat:

idat64 -S./idb2pat.py "/tmp/generated/tokio-1.29.0/target/release/libtokio.so" -a -A 
tokio.pat


Note that idb2pat has been slightly modified here for automation purposes.

Repeat that for every dependency, add salt, pepper and a little bit of patience, and we’re now
set up to use sigmake, which is IDA’s tool to turn .pat files to a signature file that IDA can
load:

sigmake -n"Test_signature" libtokio.pat [other .pat files] test.sig


This should have been the nice, peacefull and calm journey into recovering symbols from
stripped Rust executables.

But things did not work out as expected.

Troubles, as all projects have

One thing I almost omitted to mention untill now is that we need to compile with the same
compilation options that the malware author used to compile its executable.

A fair guess would be that the attacker wasn’t against a bit of optimization and speed, thus
built in release profile mode.

It’s our job to guess whether the default profile mode has been tweaked by the author or not.

As a reminder, the default release profile options are:

[profile.release]

opt-level = 3

debug = false

split-debuginfo = '...'  # Platform-specific.

strip = "none"

debug-assertions = false

overflow-checks = false

lto = false

panic = 'unwind'

incremental = false

codegen-units = 16

rpath = false


Back to the malware now. One thing suprized me when I first downloaded this rust-based
payload was its size:

$ du -h /tmp/sample 

860K    /tmp/sample


https://doc.rust-lang.org/cargo/reference/profiles.html#release
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Rust’s elf bins are knowingly quite big by default (mainly due to symbols, which are absent in
release build, but still). Knowing that our target is a static executable, having such a small
executable could indidacte that it’s likely that the default release profile has been modified by
the author.

And it was.

Finding the right release profile

Fiding the right release profile options wasn’t a hard task.

There isn’t many options in the profile that could modify target size. Candidates are:

opt-level (probably 3, s or z)
lto (thin or fat)
codegen-units

Trying a combinaison of all of them could be an option. But I assumed that the authors were
lazy, and that they probably copy/pasted some code over the internet that claims to reduce
the code size.

Sure enough, after a bit of googling around I found this:

[profile.release]

strip = true # strip symbols from the binary

opt-level = 'z' # Optimize for size

lto = true # Link Time Optimization (LTO)

codegen-units = 1 # Parallel Code Generation Units


If you are wondering how codegen-units can affect code optimization, so do I. Turns out the
author of the GitHub repo has an explaination:

“Code generation units greater than 1 specify that the compiler toolchain is allowed to
process our code in parallel. This most of the time leaves us with unused optimization
potential, in this case for size, since it will look at our code in parallel. By default when
not specified it is set to 16, which increases compilation speed.”

A good way to know if you found the correct compilation options is to compile an hello-world
crate yourself with the same toolchain and comparing your target’s code in IDA with hello-
world’s one.

And sure enough, my hello-world code and target one matched.

Introducing: Link Time Optimization

https://github.com/johnthagen/min-sized-rust?tab=readme-ov-file#references
https://github.com/Rust-Trends/size-optimization-rust-binaries
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A very annoying option used in the dropper’s compilation profile is lto = true. lto stands
for Link Time Optimization. Setting it to true means that some optimization can occur at
link time (after compilation of our dependencies). This is an issue because we signed
dependencies independently, without them being actually used in any code. However, the
malware author did not do this; all the code for the executable has been compiled at once,
meaning that every dependency was built, linked to the target executable, and optimized
afterwards.

If any function gets optimized, even a little bit, our library signature will no longer be effective.

A good illustration of this occurs at the beginning of Tokio’s runtime. When compiled with
options described above, Tokio’s runtime starts by calling RngSeed::new(), resulting in the
following assembly being generated in libtokio.so:

push    rbp

push    rbx

sub     rsp, 58h

lea     rdi, off_2E60F8

call    std::thread::local::LocalKey$LT$T$GT$::with::hef935abace049e26

mov     rcx, 736F6D6570736575h

xor     rcx, rax

mov     rsi, 646F72616E646F6Dh

xor     rsi, rdx

mov     rdi, 6C7967656E657261h

xor     rdi, rax

mov     r8, 7465646279746573h

xor     r8, rdx


While KrustyLoader has the following assembly:

push    rbp

push    rbx

sub     rsp, 58h

; <some bad boy disappeared here !>

call    sub_4B224

mov     rcx, 736F6D6570736575h

xor     rcx, rax

mov     rsi, 646F72616E646F6Dh

xor     rsi, rdx

mov     rdi, 6C7967656E657261h

xor     rdi, rax

mov     r8, 7465646279746573h

xor     r8, rdx


This messes with our signature, and the function does not get recognized.

Monomorphization

Monomorphization is a terrible word to spell.

https://rustc-dev-guide.rust-lang.org/backend/monomorph.html#collection
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It also is a word that can be used to describe Rust’s generics type system.

Explaining how Rust generics work isn’t the purpose of this blog post. If you are not familiar
with it, I encourage you reading this entry and this one from fasterthanlime’s blog. His blog is
just a great place to learn about Rust and other tech stuff in general. If you are of the curious
kind, you should check it out.

The main issue with signing generics is that if no one implements your generic, let’s say
struct Container<T>, the compiler just wont have any code to produce for it. This is an issue
for libraries generics: if no one uses the Container<T> generic type you have in your lib, then
it isn’t something you will be able to sign. You need someone implementing it, preferably in
various ways, to maximise the chances that the generated assembly code you will sign
matches the code of your target.

Dirty solution

While trying to solve LTO and Monomorphization issues, a friend and I came up with a
somewhat messy solution. Surprisingly, it’s been quite effective with popular well-maintained
crates like tokio and hyper.

The idea is to compile tons of code that implements generics of a given dependency in
various ways. This should improve the likelihood of encountering code that is:

optimized similarly to our target (solving LTO’s issue) ;
implementing generics the library exposes (solving monomorphization issue).

I clearly don’t want to download and build any random crate from the internet using Tokio,
since it is quite easy for an attacker to craft a crate that would run arbitrary code at compile
time.

A better approach would be compiling tests, examples and benches targets from the
dependency. Those should create executables that use most of functions exposed by the
crate, while still being optimized by lto.

Three issues with that.

First: depending on the crate, tests, examples or benches might not be present, but hey, this
is better than nothing.

Second: this approach generates a tons of executables (e.g >200 for tokio), which can be
really long to sign, depending on your hardware and the signing tool you are using.

Last but not least: crates from crates.io don’t always embeed tests, examples and
benches, but the project hosted on GitHub often does.

https://fasterthanli.me/articles/the-curse-of-strong-typing#slices-and-arrays
https://fasterthanli.me/articles/rust-vs-java-generics
https://blog.m1t.re/posts/fcsc-le-rustique-v2/
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Thus we need to pull the dependency from GitHub, guess the correct branch and tag
corresponding to the version used in our target (given that such a branch still exists) and
compile everything.

The good part is that giving the GitHub repository URL of a crate is mandatory for publishing
something to crates.io. Unfortunately, no one is forced to give a valid URL. One could also
delete or move the GitHub repository after publication.

Results

The results were quite good. After 15mn of compilation, I was able to generate 1170
executables for IDA to sign, which took another 5-10mn, and matched 7514 functions:

Signing Rust’s stdlib

Rust provides everything we need to sign the standard library used by our toolchain.

Toolchain debug information is available to download through rustup:

rustup component add rustc-dev --toolchain 1.70.0-x86_64-unknown-linux-musl


This command downloads symbols, object files and shared libraries (with symbols) used in
your toolchain.
They are available under ${HOME}/.rustup/toolchains/{toolchain}/.
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$ find ~/.rustup/toolchains/1.70.0-x86_64-unknown-linux-musl/ -type f \( -name "*.so" 
-o -name "*.o" \)

./lib/libstd-a9e9fdf6bd876a9c.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/crtn.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/crtend.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/rcrt1.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/Scrt1.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/crtbeginS.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/crtbegin.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/crt1.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/crtendS.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/self-contained/crti.o

./lib/rustlib/x86_64-unknown-linux-musl/lib/libzerofrom_derive-43985d6c6f2d6449.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libchalk_derive-eaa4f39338ccf84d.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libserde_derive-310f743814410e38.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libcstr-6c2f66117dc9abc1.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/librustc_macros-164f925dc05bb4c7.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libtracing_attributes-15ce531b9da618ae.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libicu_provider_macros-
31041477eb05c7f4.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libstd-a9e9fdf6bd876a9c.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/librustc_driver-65a88990b6151b4f.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libthiserror_impl-346d3314154f3ab8.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libzerovec_derive-e1fe9a99c61ac1d4.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libtest-52924d8e151e3987.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libdisplaydoc-a6b6f4c161687932.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libproc_macro_hack-10b1ed1a0a1bb93c.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libyoke_derive-5dbc7091c4175f58.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libunic_langid_macros_impl-
e3626691e4b3859c.so

./lib/rustlib/x86_64-unknown-linux-musl/lib/libderive_more-5e542ae59d78db58.so

./lib/librustc_driver-65a88990b6151b4f.so

./lib/libtest-52924d8e151e3987.so


Those are pre-built and can be used to generate a signature, the same way we generated a
signature for dependencies.

Results

The best thing about signing stdlib is that it is constant and should not vary depending on the
target’s compile option.

Here is the result I had signing 1.70.0-x86_64-unknown-linux-musl:

And here is a tiny example of what both signatures applied looks like in IDA’s decompialtion.
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Thanks to Mandiant’s idb2pat which has proven to be a very usefull tool.

https://github.com/mandiant/flare-ida/blob/master/python/flare/idb2pat.py

