Thoughts on creating a tracking pointer class, part 14:
Nonthrowing moves with the shared tracking pointer

=. devblogs.microsoft.com/oldnewthing/20250828-00/?p=111524

August 28, 2025

So far, we’ve been working on an alternate design for tracking_pointers, but we found that
it had the unfortunate property of having potentially-throwing constructors and move
assignment operations.

We can make these operations non-throwing by removing the need for a trackable object
always to have a ready-made tracker. Instead, we can create a tracker on demand the
first time somebody asks to track it. The exception doesn’t go away, but it defers it to the
time a tracking pointer is created. This is arguably a good thing because it makes tracking
pointers “pay for play”: You don’t allocate a tracker until somebody actually needs it.

1/3


https://devblogs.microsoft.com/oldnewthing/20250828-00/?p=111524
https://devblogs.microsoft.com/oldnewthing/20250827-00/?p=111518

template<typename T>
struct trackable_object

{

trackable_object() noexcept = default;

~trackable_object()

{
set_target(nullptr);

}

// Copy constructor: Separate trackable object

trackable_object(const trackable_object&) noexcept
trackable_object()

{1

// Move constructor: Transfers tracker

trackable_object(trackable_object&& other) noexcept
m_tracker(other.transfer_out()) {
set_target(owner());

}

// Copying has no effect on tracking pointers

trackable_object&
operator=(trackable_object const&) noexcept

{
return *this;

}

// Moving abandons current tracking pointers and

// transfers tracking pointers from the source

trackable_object&
operator=(trackable_object&& other) noexcept {
set_target(nullptr);
m_tracker = other.transfer_out();
set_target(owner());
return *this;

}

tracking_ptr<T> track() /* noexcept */ {
ensure_tracker();
return { m_tracker };

}

tracking_ptr<const T> track() const /* noexcept */ {
ensure_tracker();
return { m_tracker };

}

tracking_ptr<const T> ctrack() const /* noexcept */ {
ensure_tracker();
return { m_tracker };

}

private:

std::shared_ptr<T*> mutable m_tracker;

T* owner() const noexcept {

2/3



return const_cast<T*>(static_cast<const T*>(this));

}
void ensure_tracker() const
{
if (!'m_tracker)
{
m_tracker = std::make_shared<T*>(owner());
}
}
std::shared_ptr<T*> transfer_out()
{
return std::move(m_tracker);
}
void set_target(T* p)
{
if (m_tracker)
{
*m_tracker = p;
}
}

H

We make the m_tracker mutable because ensure_tracker () might be asked to create a
tracker on demand from a const reference.

Creating the tracker on demand removes the exception from the default constructor, the
move and copy constructors, and the move and copy assignments. The potentially-
throwing behavior moves to the track() and ctrack() methods, but that can be sort of
justified on the principle of “pay for play”.

Now, if you look more closely at what we have, you may notice that the shared ptr is
overkill. We don’t use weak pointers, and all of our operations are single-threaded, so the
atomic memory barriers inside the shared _ptr operations are not necessary. We'll create
a “limited-use single-threaded” version of the shared ptr next time.

3/3



