
1/3

August 22, 2025

Thoughts on creating a tracking pointer class, part 10:
Proper conversion

devblogs.microsoft.com/oldnewthing/20250822-00/?p=111494

Last time, we added the ability to convert tracking pointers to non-const objects into
tracking pointers to const objects, but we noted that there’s a problem.

The problem is that our change accidentally enabled the reverse conversion: From const
to non-const.

We want to be able to convert non-const to const, but not vice versa, so let’s require the
source to be non-const.

template<typename T>

struct tracking_ptr : tracking_ptr_base<std::remove_cv_t<T>>

{

private:

 using base = tracking_ptr_base<std::remove_cv_t<T>>;

 using MP = tracking_ptr<std::remove_cv_t<T>>;

public:

 T* get() const { return this->tracked; }

 using base::base;

 tracking_ptr(MP const& other) : base(other) {}

 tracking_ptr(MP&& other) : base(std::move(other)) {}

};

https://devblogs.microsoft.com/oldnewthing/20250822-00/?p=111494
https://devblogs.microsoft.com/oldnewthing/20250821-00/?p=111492

2/3

The conversion operators now require a tracking pointer to a non-const object (which to
reduce typing we call MP for mutable pointer). The const-to-const version is inherited from
the base class.

Inheriting the constructors is particularly convenient because it avoids redefinition
conflicts. If we didn’t have inherited constructors, we would have started with

template<typename T>

struct tracking_ptr

{

private:

 using MP = tracking_ptr<std::remove_cv_t<T>>;

public:

 tracking_ptr(tracking_ptr const& other);

 tracking_ptr(MP const& other);

 tracking_ptr(tracking_ptr&& other);

 tracking_ptr(MP&& other);

};

But this doesn’t work with tracking_ptr<Widget> because you now have pairs of
identical constructors since the “non-const-to-T” versions are duplicates of the copy and
move constructor when T is itself non-const. Substituting T = Widget, we get

template<typename T>

struct tracking_ptr

{

private:

 using MP = tracking_ptr<Widget>;

public:

 tracking_ptr(tracking_ptr<Widget> const& other);

 tracking_ptr(tracking_ptr<Widget> const& other);

 tracking_ptr(tracking_ptr<Widget>&& other);

 tracking_ptr(tracking_ptr<Widget>&& other);

};

And the compiler complains that you declared the same constructor twice. You would
have to use SFINAE to remove the second one.

3/3

template<typename T>

struct tracking_ptr

{

private:

 using MP = tracking_ptr<std::remove_cv_t<T>>;

public:

 tracking_ptr(tracking_ptr const& other);

 template<typename = std::enable_if<std::is_const_v<T>>>

 tracking_ptr(MP const& other);

 tracking_ptr(tracking_ptr&& other);

 template<typename = std::enable_if<std::is_const_v<T>>>

 tracking_ptr(MP&& other);

};

On the other hand, redeclaring an inherited constructor overrides it, so we can just
declare our constructors and not worry about conflicts.

But wait, our attempt to fix this problem introduced a new problem. We’ll look at that next
time.

