
1/2

August 21, 2025

Thoughts on creating a tracking pointer class, part 9:
Conversion

devblogs.microsoft.com/oldnewthing/20250821-00/?p=111492

Last time, we added the ability to create tracking pointers from const objects. But we
discovered that you could not convert a tracking_ptr<T> to a tracking_ptr<const T>.
But this should be possible, because the available operations on a tracking pointer to a
const object is a subset of the operations available to a tracking pointer to a non-const
object.

We can perform the conversion by copying/moving the underlying tracking_ptr_base.

template<typename T>

struct tracking_ptr : tracking_ptr_base<std::remove_cv_t<T>>

{

private:

 using base = tracking_ptr_base<std::remove_cv_t<T>>;

public:

 T* get() const { return this->tracked; }

 using base::base;

 tracking_ptr(base const& other) : base(other) {}

 tracking_ptr(base&& other) : base(std::move(other)) {}

};

If somebody has a tracking_ptr<T> it converts to a tracking_ptr<const T> by means
of our two new constructors, which copy/move the common tracking_ptr_base<T>,
which is the thing that babysits the shared_ptr<T*>. To avoid repetitive typing, we make

https://devblogs.microsoft.com/oldnewthing/20250821-00/?p=111492
https://devblogs.microsoft.com/oldnewthing/20250820-00/?p=111490

2/2

base an alias for the base class tracking_ptr_base<std::remove_cv_t<T>>.

We don’t need to write custom assignment operators because assignment can be
performed by converting the tracking_ptr<T> to a tracking_ptr<const T>, and then
assigning the tracking_ptr<const T>.

But wait, there’s a problem with this. We’ll look at it next time.

