
1/3

August 20, 2025

Thoughts on creating a tracking pointer class, part 8:
Tracking const objects

devblogs.microsoft.com/oldnewthing/20250820-00/?p=111490

Last time, we added the ability to create non-modifying tracking pointers, but it required
that you start with a non-const trackable object. But what if you want to create a non-
modifying tracking pointer to an object to which you have only a const reference?

It took me a few tries before I hit upon the simple solution.¹

We just need to make the trackable object’s m_trackers mutable, and then patch up the
consequences.

https://devblogs.microsoft.com/oldnewthing/20250820-00/?p=111490
https://devblogs.microsoft.com/oldnewthing/20250819-00/?p=111488%27%0D%0A%20%20TITLE=

2/3

template<typename T>

struct trackable_object

{

 ⟦ ... ⟧

 tracking_ptr<T> track() noexcept {

 return { owner() };

 }

 tracking_ptr<const T> track() const noexcept {

 return { owner() };

 }

 tracking_ptr<const T> ctrack() const noexcept {

 return { owner() };

 }

private:

 friend struct tracking_ptr_base<T>;

 T* owner() const noexcept {

 return const_cast<T*>(static_cast<const T*>(this));

 }

 tracking_node mutable m_trackers;

 ⟦ ... ⟧

};

After making the m_trackers mutable, we can make the ctrack() method const. We
may as well also add a track() const that produces a read-only tracker from a const
object. This is analogous to how C++ standard library container begin() and and end()
methods produce read-only iterators if obtained from const containers.

Casting away const when creating and updating the tracking_ptr<const T> is okay
because the tracking_ptr<const T>‘s get() method will reapply const before giving it
to the client, and the only other use of the pointer is to access the m_trackers, which is
now mutable.

There’s still a problem: Although you can convert a T* to a const T*, a std::
unique_ptr<T> to a std::unique_ptr<const T>, and a std::shared_ptr<T> to a std::
shared_ptr<const T>, you cannot convert a tracking_ptr<T> to a tracking_ptr<const
T>. We’ll fix that next time.

Bonus chatter: I considered whether I should also support tracking_ptr<volatile T>
and tracking_ptr<const volatile T>. It wouldn’t be hard, but it would be extra typing. I
decided not to, on the grounds that the C++ standard library typically doesn’t bother with
volatile either: Standard containers have begin() and cbegin() but not vbegin() or
cvbegin().

3/3

¹ As Blaise Pascal is reported to have written, “If I had more time, I would have written a
shorter letter.” Sometimes it takes a lot of work to come up with what ends up looking
easy.

