
1/3

August 19, 2025

Thoughts on creating a tracking pointer class, part 7:
Non-modifying trackers, second try

devblogs.microsoft.com/oldnewthing/20250819-00/?p=111488

Last time, we tried to add non-modifying trackers to our tracking pointers implementation.
I noted at the end that our attempt was wrong.

The problem is in the code we didn’t change:

 void set_target(T* p) noexcept

 {

 for (tracking_node* n = m_trackers.next;

 n != &m_trackers; n = n->next) {

 static_cast<tracking_ptr<T>*>(n)->tracked = p;

 }

 }

The static_cast is a downcast from a tracking_node to its derived tracking_ptr<T>.
But the derived class might not be tracking_ptr<T>! It could be a tracking_ptr<const
T>.

To fix this, we need to use a consistent type for the derived class. We can do this by
renaming our original tracking_ptr to tracking_ptr_base, which will serve as the
consistent derived class, and then move the get() method to a tracking_ptr that is
derived from tracking_ptr_base.

https://devblogs.microsoft.com/oldnewthing/20250819-00/?p=111488
https://devblogs.microsoft.com/oldnewthing/20250818-00/?p=111486

2/3

template<typename T>

struct tracking_ptr_base : private tracking_node

{

 // T* get() const { return tracked; }

 tracking_ptr_base() noexcept :

 tracking_node(as_solo{}),

 tracked(nullptr) {}

 tracking_ptr_base(tracking_ptr_base const& other) noexcept :

 tracking_node(copy_node(other)),

 tracked(other.tracked) { }

 ~tracking_ptr_base() = default;

 tracking_ptr_base& operator=(tracking_ptr_base const& other) noexcept {

 tracked = other.tracked;

 if (tracked) {

 join(trackers(tracked));

 } else {

 disconnect();

 }

 return *this;

 }

 tracking_ptr_base& operator=(tracking_ptr_base&& other) noexcept {

 tracked = std::exchange(other.tracked, nullptr);

 tracking_node::displace(other);

 return *this;

 }

private:

 friend struct trackable_object<T>;

 static tracking_node& trackers(T* p) noexcept {

 return p->trackable_object<T>::m_trackers;

 }

 tracking_node copy_node(tracking_ptr_base const& other) noexcept

 {

 if (other.tracked) {

 return tracking_node(as_join{},

 trackers(other.tracked));

 } else {

 return tracking_node(as_solo{});

 }

 }

 tracking_ptr_base(T* p) noexcept :

 tracking_node(as_join{}, trackers(p)),

 tracked(p) { }

protected:

 T* tracked;

};

3/3

template<typename T>

struct tracking_ptr : tracking_ptr_base<std::remove_cv_t<T>>

{

public:

 T* get() const { return this->tracked; }

 using tracking_ptr::tracking_ptr_base::

 tracking_ptr_base;

};

template<typename T>

struct trackable_object

{

 ⟦ ... ⟧

private:

 friend struct tracking_ptr_base<T>;

 // friend struct tracking_ptr<const T>;

 ⟦ ... ⟧

 void set_target(T* p)

 {

 for (tracking_node* n = m_trackers.next;

 n != &m_trackers; n = n->next) {

 static_cast<tracking_ptr_base<T>*>(n)->

 tracked = p;

 }

 }

};

Okay, now we can have an object give away a non-modifying tracking pointer to itself by
using ctrack() instead of track().

But wait, this still requires that the original object be itself mutable. But if all you have is a
const reference to a trackable object, surely you should be allowed to create a non-
modifying tracking pointer to it, right?

We’ll do that next time.

https://devblogs.microsoft.com/oldnewthing/20240517-00/?p=109774

