
1/3

August 18, 2025

Thoughts on creating a tracking pointer class, part 6:
Non-modifying trackers

devblogs.microsoft.com/oldnewthing/20250818-00/?p=111486

Let’s add non-modifying trackers to our tracking pointers implementation. That is, a
tracking pointer that gives you only read-only access to the tracked object.

The idea is that tracking pointers and non-modifying tracking pointers all share the same
circular doubly linked list. The only difference is what kind of pointer comes out of get.

First, we’ll introduce a nickname MT meaning “mutable (non-const) version of T” and have
tracking_ptr use it instead of T, with the exception of the get() method, which returns
the (possibly-const) original type T. (Actually, we may as well also remove volatility while
we’re at it. Completing volatility support will be left as a pointless exercise.)

https://devblogs.microsoft.com/oldnewthing/20250818-00/?p=111486
https://devblogs.microsoft.com/oldnewthing/20250815-00/?p=111484

2/3

template<typename T>

struct tracking_ptr : private tracking_node

{

private:

 using MT = std::remove_cv_t<T>;

public:

 T* get() const { return tracked; }

 ⟦ ... other public members as before ... ⟧

private:

 friend struct trackable_object<MT>;

 static tracking_node& trackers(MT* p) noexcept {

 return p->trackable_object<MT>::m_trackers;

 }

 tracking_ptr(MT* p) noexcept :

 tracking_node(as_join{}, trackers(p)),

 tracked(p) {

 }

 ⟦ ... ⟧

 MT* tracked;

};

Next, we add a ctrack() method to the trackable_object to produce a non-modifying
tracking pointer.

template<typename T>

struct trackable_object

{

 ⟦ ... ⟧

 tracking_ptr<T> track() noexcept {

 return { owner() };

 }

 tracking_ptr<const T> ctrack() noexcept {

 return { owner() };

 }

private:

 friend struct tracking_ptr<T>;

 friend struct tracking_ptr<const T>;

 ⟦ ... ⟧

};

Okay, now we can have an object give away a non-modifying tracking pointer to itself by
using ctrack() instead of track().

3/3

But wait, this code is wrong.

We’ll continue our investigation next time.

