
1/3

August 15, 2025

Thoughts on creating a tracking pointer class, part 5:
Copying our tracking pointer

devblogs.microsoft.com/oldnewthing/20250815-00/?p=111484

Our previous attempt to create a tracking pointer class had the perhaps-undesirable
property that copying a const tracking pointer is not permitted. This requirement arose
because copying a tracking pointer causes the copy to be linked into the circular linked
list of the source, and that means modifying the link pointers in the source. Can we work
around this?

The secret here is realizing that it’s not important where the copy gets inserted into the
circular linked list. The order of items in the list is not significant. So don’t use the source
pointer as the insertion point for the copy. Instead, use the source’s tracking anchor node,
which is non-const.

https://devblogs.microsoft.com/oldnewthing/20250815-00/?p=111484
https://devblogs.microsoft.com/oldnewthing/20250814-00/?p=111482

2/3

 tracking_ptr(tracking_ptr const& other) noexcept :

 tracking_node(copy_node(other)),

 tracked(other.tracked) { }

 tracking_ptr& operator=(tracking_ptr const& other) noexcept {

 tracked = other.tracked;

 if (tracked) {

 join(trackers(tracked));

 } else {

 disconnect();

 }

 return *this;

 }

private:

 ⟦ ... as before ... ⟧

 tracking_node copy_node(tracking_ptr const& other) noexcept

 {

 if (other.tracked) {

 return tracking_node(as_join{},

 trackers(other.tracked));

 } else {

 return tracking_node(as_solo{});

 }

 }

 T* tracked;

Switching to the anchor node does have a complication that we need to check for a null
pointer in the source before we try to get the target’s trackers. If the source tracks a null
pointer, then that means that we are copying an expired tracking pointer, so the copy
should also be empty. We use the helper function trick to choose a constructor at runtime.

Note that this solution takes advantage of const/non-const aliasing. We are modifying a
const object through a non-const path. This type of aliasing is normally a compiler’s
nightmare:

bool test(int const& v, int* p)

{

 auto old_value = v;

 *p = 42;

 return old_value == 99;

}

The compiler cannot optimize this to

bool test(int const& v, int* p)

{

 *p = 42;

 return v == 99;

}

3/3

because of the possibility that somebody called it like this:

int v = 99;

test(v, &v);

Bonus chatter: The Itanium processor had special instructions to allow compilers to
perform this optimization in the mainline path, with a fallback if it turned out that v == &p
after all.

 // no "alloc" needed - lightweight leaf function

 // on entry, r32 = address of v, r33 = p

 ld4.a r31 = [r32] // fetch v into r31 in advance

 mov r30 = 42 // r30 = constant 42

 mov r29 = 99 ;; // r29 = constant 99

 st4 [r33] = r30 ;; // write 42 to *p

 ld4.c.nc r31 = [r32] // reload v if necessary

 cmp.eq p6, p7 = r31, r29 ;; // v == 99?

(p6) mov ret0 = 1 // result is 1 if true

(p7) mov ret0 = 0 // result is 0 if false

 br.ret.sptk.many rp // return

Next time, we’ll add a ctrack method for creating a tracking pointer that produces a
const T. For the times you want to let somebody track an object, but not modify it.

https://devblogs.microsoft.com/oldnewthing/20150805-00/?p=91171

