
1/2

July 24, 2025

How can I wait until a named object (say a mutex) is
created?

devblogs.microsoft.com/oldnewthing/20250724-00/?p=111406

A customer used a named mutex as a way to detect that another instance of the program
is already running. This is pretty standard.

They also used the presence of the mutex to indicate that the program is ready to receive
work requests: When the program creates the mutex, this prevents new instances from
running, and it also announces that the program is open for business.

The customer had a manager program that launched this program and wants the
manager to wait until the mutex is created before it starts submitting work. They wanted
to know if there is a way (other than polling) to wait for a mutex to be created.

No, there is no general way to receive a notification when a named kernel object is
created.

One idea is to use a named manual-reset event (initially unsignaled), and have the
program signal the event when it is ready to accept work. The manager program waits on
that event. The program resets the event when it shuts down to indicate that it cannot
accept work.

Unfortunately, this solution doesn’t work if the program crashes before it can reset the
event. Handles are automatically closed when a program crashes. Closing a mutex
handle implicitly releases it (marking the mutex as abandoned) but closing an event does
not reset it. This means that the next time the manager launches the program, it will think
that the program is ready, even though the program hasn’t even started.

I tried to come up with a solution for this, since Windows doesn’t have “auto-set events”.

One idea was to use a named shared memory block (protected by a named mutex) that
contains the worker program’s PID and creation time (because the PID and creation time
uniquely identify a program on a system), as well as the name of an event that the
manager wants the worker program to set. The manager program opens (or creates if
necessary) the shared memory block and checks the PID/time. If not valid, then the
previous worker program exited, so the manager generates a new event name and writes

https://devblogs.microsoft.com/oldnewthing/20250724-00/?p=111406


2/2

it to the shared memory block, then launches the worker program and waits for that event
to be set (or for the worker program to exit). If the PID/time is valid, then the worker is still
running, and it can just wait on the event.

I also considered using an opportunistic lock as a signal: The manager program opens a
file with an opportunistic lock, and the worker program opens that file for writing when it’s
ready. Opening for writing breaks the lock.

But then I realized that Windows already has an entire infrastructure for “launching a
program and waiting for it to be ready”: COM local servers.

You can CoCreateInstance a COM local server, and COM will launch the server process
and wait for it to finish initializing and call CoRegisterClassObject, at which point it will
use that class object to obtain an instance and return it. Somebody else has already done
the work of ensuring that only one copy is running and waiting for it to be ready. You can
use the returned COM object to communicate with the server program, and you can
release the COM object to tell the server that you don’t need it any more.

¹ Note that this overloading of the mutex is already a problem, because it means that the
program cannot detect whether it should run until it is ready to run. The rule that the
mutex cannot be created until the program is ready means that if two copies start at the
same time, both of them will think that they are “the one” and will prepare to receive work.
Whoever becomes ready first will claim the mutex, and the other will realize, at the end of
all its hard work, that it is no longer needed.

https://devblogs.microsoft.com/oldnewthing/20130415-00/?p=4663

