Exploring possible solutions to the inconsistency in
how Windows searches case-insensitively for named
resources

B® devblogs.microsoft.com/oldnewthing/20250723-00/?p=111403
July 23, 2025

Some time ago, | explained why Windows has trouble finding Win32 resources with
accented characters. It boils down to an ambiguity in the Portable Executable
specification: It says that the names are treated as case-insensitive, but it does not
specify which case-insensitive comparison algorithm to use. The Resource Compiler uses
the C locale (which considers the lowercase Latin letters a-z to be counterparts to the
uppercase Latin letters A-Z), whereas the resource subsystem uses the user’s current
locale’s case mapping table (which can vary from user to user, but which usually
considers lowercase accented letters to be equivalent to the same accent applied to the
uppercase version of the lowercase base character).

Commenter Jan Ringo$ wondered if this could be fixed and offered a few possibilities.

The first option is to change the behavior of Findresource to use the C locale first and
then use the user locale if there is no match according to the C locale. “I don’t think it
would break compatibility.”

This change will definitely break compatibility. As well as hurting performance.

The performance penalty is obvious: Every resource search now takes place twice, once
with C locale capitalization and once with user locale capitalization. Now, you could avoid
the second search if you notice that the result of the user locale capitalization is the same
as the C locale capitalization, and the second search is never performed if the first search
succeeds, so the penalty is probably mitigated significantly. You’d have to do some
performance testing to see how often the second search occurs in practice.

The compatibility break is more serious. It means that if a resource name matches the C
locale capitalization but not the user locale capitalization, the revised version finds it, but
the original version either failed or found the user locale version instead.

1/3

https://devblogs.microsoft.com/oldnewthing/20250723-00/?p=111403
https://devblogs.microsoft.com/oldnewthing/20250430-00/?p=111129
https://devblogs.microsoft.com/oldnewthing/20250430-00/?p=111129#comment-142661

Returning a different resource entirely is clearly a problem. The program used to find the
user locale capitalized resource, and after a Windows update, it now finds the C locale
capitalized resource.

“But who would be so crazy as to have a C locale capitalized resource that is never
found?”

In my experience, these types of “who would be so crazy as to...” questions are often
answered with “because they were relying it by accident, not on purpose.”

Suppose you have designed your system so that when it loads a DLL, it looks for a
resource with a name provided by a configuration file or some data. For example, the
Internet Explorer res : protocol behaves this way. If somebody specifies a resource of
the form res://mydl11.d11/#10/Stadte, the res: protocol handler will call Find-
Resource with the string stadte, which means “cities” in German.

Somebody who wants to use this feature might add the cities resource to their Resource
Compiler script:

Stadte RCDATA L"Aachen\0Berlin\0\0Chemnitz"

[... hundreds of other resource statements ...]

They then build the binary and find that it doesn’t work. (They don'’t realize that the reason
is that the resource is capitalized by the Resource Compiler as STA4DTE, but the resource
loader looks for STADTE. Not that we’d expect them to know this, seeing as how Maurice
Kayser didn’t know it, and | see no reason to believe that Maurice’s experience isn’t
typical of all other developers.)

As part of their “just keep trying everything you can think of in the hopes that one of them
works”, they found that if they add

STADTE RCDATA L"Aachen\@Berlin\e\@Chemnitz"
at the very end of their resource script, then the cities list starts working.

As the program is developed, they kept updating the STADTE cities list, adding seven
more cities, but the first one atrophied because it was far away and nobody noticed it.

If the behavior of FindResource were to change to prefer the C locale capitalization, then
this program’s city list will regress to the three-city version, rather than the ten-city version
they intended.

“Okay, so reverse the search. Look for the user local version first and fall back to the C
locale.”

That still would break compatibility.

2/3

https://learn.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/platform-apis/jj710218(v=vs.85)

Suppose this program decided that it didn’t want any cities at all, so they deleted the
STADTE resource. The FindResource fails, and the cities list is blank. If you were to add
the C locale fallback, then this change would find the old, long-forgotten stadte version,
and three cities would show up in the list when they intended none.

Another proposal from Jan was to add a switch to the Resource Compiler to tell it to store
the resource names as-is (no capitalization) and then change FindResource to search for
an exact match first and then use the user locale if there is no exact match.

Again, this is a breaking change. Consider that program that was compiled ten years ago
that had both stadte and stAdte resources. Today, a search for Stadte finds stAdte,
but with Jan’s second proposal, it would find Stadte, which is a change in behavior.

For compatibility reasons, the behavior of FindrResource cannot change.

What you can do is have a switch for the Resource Compiler that says, “Capitalize the
strings according to the user locale instead of the C locale.” Only programs that have
been recompiled with the new switch are affected, so they explicitly opted into the new
behavior. Old programs (which were necessarily compiled without the new switch)
continue to behave as before.

But if you think about it, this switch to control capitalization isn’t really necessary. You can
just capitalize the strings yourself in the resource script! (Or instead of doing the
capitalization manually, maybe you write a preprocessing step that converts all the
resource names to user-locale uppercase.)

The fact that you can already address the problem yourself without any tooling changes
reduces the likelihood that the tooling will add a switch to change the capitalization rules:
That flag would just be a convenience rather than providing essential functionality that
isn’t obtainable any other way.

Furthermore, since the resource loader uses the user locale, you can’t really be sure what
those strings are going to capitalize to, because you don’t control the user’s locale. So
even in the absence of the locale mismatch, you still would be better off explicitly
capitalizing your named resources, to remove the unpredictable user locale from the
picture.

Or just stick to the uppercase letters A through Z for your resource names. | believe all
locales treat them as already uppercase, so the uppercasing through the user locale is a
no-operation.

Or just don’t use named resources at all. Stick to numbers. Everybody agrees on
numbers.

3/3

