
1/2

July 22, 2025

Being more adamant about reporting that C++/WinRT
was unable to resume execution on a dispatcher thread

devblogs.microsoft.com/oldnewthing/20250722-00/?p=111400

Last time, we saw what happens if C++/WinRT is unable to resume execution on a
dispatcher thread: If you use winrt::resume_foreground with a CoreDispatcher, then
the coroutine simply never resumes (which means that it appears to have hung) and
leaks. If you use winrt::resume_foreground with a DispatcherQueue, then the result of
the co_await tells you whether the thread switch was successful, but in practice nobody
actually checks the result.

Both of these are just bad situations to be in. In the DispatcherQueue case, you have to
remember to check a value that in practice nobody ever checks. In the CoreDispatcher
case, there’s simply nothing you can do at all.

The Windows Implementation Library provides an alternative.

We get rid of the pit of failure. None of this “check a value that is easy to overlook”. If the
coroutine cannot resume on the dispatcher thread, it throws an exception, specifically
HRESULT_FROM_WIN32(ERROR_NO_TASK_QUEUE). It’s hard to ignore an exception. You need
to write special “exception-ignoring” code. And as a rule, C++/WinRT uses exceptions to
report that things have gone wrong, so this is consistent with the rest of the C++/WinRT
library.

Now we can complete the table of behaviors if you call resume_foreground and the
dispatcher is unable to accept the work item.

  winrt::resume_foreground wil::resume_foreground

CoreDispatcher hang throw “no task queue”

DispatcherQueue return false throw “no task queue”

One thing to note is that the “no task queue” exception is thrown from an arbitrary thread.
The original thread is no longer available, since we suspended on it, and the thread is
now doing something else. And the destination thread is not available because that’s why
we’re throwing the exception. We’re stuck in a no-man’s land where nobody has access

https://devblogs.microsoft.com/oldnewthing/20250722-00/?p=111400
https://devblogs.microsoft.com/oldnewthing/20250721-00/?p=111396
https://blog.codinghorror.com/falling-into-the-pit-of-success/
https://github.com/microsoft/wil/blob/158863d89f6b462c60fb56b65ae4db6afee98adf/include/wil/cppwinrt_helpers.h#L155


2/2

to a thread, so the exception is just thrown from wherever it can. If you need to run
destructors on or handle the exception from a specific thread, you’ll have to switch to that
thread yourself.

Bonus chatter: How does wil::resume_foreground() work?

The client-provided delegate is wrapped inside another delegate which keeps track of
whether it has ever been called. If the delegate finds itself destructed without being
called,¹ then it knows that the thread switch failed, and it sets orphaned to true before
manually resuming the coroutine. The awaiter’s await_resume() function does the work
of throwing the “no task queue” exception if the orphaned flag is set.

¹ There’s an edge case here: If the dispatcher rejects the delegate with an exception, then
propagate that exception and don’t throw another exception for an uncalled delegate.


