
1/2

July 9, 2025

When I install an unhandled structured exception filter,
why doesn’t std::terminate get called?

devblogs.microsoft.com/oldnewthing/20250709-00/?p=111360

For diagnostic and reliability purposes, a customer wanted to detect and report all all
unhandled C++ exceptions as well as all unhandled structured exceptions. Their idea was
to cover both exits:

Use set_terminate to install a std::terminate handler, which is called when a
C++ exception goes unhandled.
Use SetUnhandledExceptionFilter to install an unhandled exception handler,
which is called when a structured exception goes unhandled.

When they did this, they found that C++ exceptions never reached their std::terminate
handler. They instead went to the unhandled structured exception filter.

The customer understood that C++ exceptions are internally implemented by the
Microsoft Visual C++ compiler in terms of structured exceptions but their understanding
was that the unhandled structured exception filter is called last, after all other exception
filters. So the C++ unhandled exception filter should have run first.

While it’s true that the unhandled structured exception filter is called last, what the
customer didn’t realize is that the way that the Microsoft Visual C++ compiler recognizes
unhandled exceptions is by itself installing an unhandled exception filter!

To throw a C++ exception, the Microsoft Visual C++ compiler calls RaiseException, and
the operating system then walks up the stacks looking for any functions that have
installed structured exception filters. The C++ compiler generates these structured
exception filters for any function that requires awareness of exceptions, even if they don’t
themselves catch exceptions. For example, if there are local variables with destructors,
the structured exception filter will destruct those local variables when an exception
escapes their frame. (This is, after all, the principle behind RAII.)

If no functions on the stack handle the structured exception (which itself represents the
C++ exception), then the custom unhandled structured exception filter installed by the
Microsoft Visual C++ compiler inspects the exception, realizes that it’s a C++ exception,

https://devblogs.microsoft.com/oldnewthing/20250709-00/?p=111360


2/2

and concludes that what it has is an unhandled C++ exception.

Therefore, if you install your own custom unhandled structured exception filter, it will
replace the unhandled structured exception filter installed by the Microsoft Visual C++
compiler, and therefore you will see the unhandled C++ exception instead of the compiler
infrastructure.

Now that we understand what is happening, we can look for solutions next time.

Bonus chatter: If you think about it, the Visual C++ runtime doesn’t have much choice
but to install an unhandled structured exception filter. If a C++ exception goes unhandled,
that means that the corresponding structured exception goes unhandled, and how else
are you going to realize that this has happened aside from installing your own unhandled
structured exception filter?

Okay, so one way to solve this would be to have the C++ runtime raw entry point install
an exception handler filter. Since it is the outermost exception handler filter on the thread,
it will get called for anything that escaped main unhandled. Similarly, the threads created
by _beginthreadex and std::thread could install their own exception handler filter
before calling the app-supplied thread function. However, this fails to observe unhandled
exceptions that escape threads that were created by calling CreateThread directly, so
you would have to add another rule that says “Threads created by CreateThread must
not allow exceptions to escape.” Since functions generally do not know how the thread
they are running on was created, this rule breaks down quickly.


