Why do | get errors or warnings about some weird
symbol called ?main@@YAHP$01E$AAV?
$Array@PES$AAVString@Platform..., part 3

B® devblogs.microsoft.com/oldnewthing/20250627-00/2p=111316

June 27, 2025

We have been investigating why a project is getting_an error about a weird C++/CX
symbol, and we tracked it down to three things:

« If you compile with C++/CX, the compiler injects vccorlib.1lib as a default library.

e The vccorlib.1lib library provides a definition of main.

o The linker special rule for resolving references introduced by a library causes the
search for main to look in vccorlib.1ib ahead of the fuzzer library that contains the
main we want.

To get the linker to find the intended main, we need to take away one of the conditions.

For the first item, we could take away all the components that use C++/CX. But
presumably they are there because we need to test them, so that’s not an option.

Another possibility is to remove vccorlib. 1ib from the default library list. The library is
still needed, but we can add it back as an explicit library.

link /out:fuzzer.exe /subsystem:console fuzzer.obj cx.obj lib.lib vccorlib.lib
/NODEFAULTLIB:vccorlib.1ib

The avoids the problem with the special rule: The reference to main came from
libcmt.1lib, so the search proceeds through the rest of the default libs, and then wraps
around back to the explicit libraries. In the list of explicit libraries, we have been careful to
put 1ib.1ib ahead of vccorlib.1lib, so that the mainin 1ib.1ib gets found first.

For the second item, there’s not much we can do because the vccorlib.1ib is provided
as part of the toolchain, so we are not at liberty to modify it.

For the third item, we can try to avoid the linker special rule by making sure that the
reference to main does not come from a library in the first place. That ensures that the
search starts with the first explicitly library rather than doing the weird wraparound thing.

1/3

https://devblogs.microsoft.com/oldnewthing/20250627-00/?p=111316
https://devblogs.microsoft.com/oldnewthing/20250626-00/?p=111314
https://learn.microsoft.com/cpp/build/reference/link-input-files?view=msvc-170

One way to force it is to have another object file that contains an explicit reference to
main

rem new! An object file that requests main.
>forcemain.cpp echo int __cdecl main(int, char**); auto forcemain = main;
cl /c forcemain.cpp

rem Add it as the first object file.
link /out:fuzzer.exe /subsystem:console forcemain.obj fuzzer.obj cx.obj 1lib.1lib

rem success!

The first reference to main comes from forcemain, which is not a library, so the special
library search rule does not come into play.

| put forcemain.obj first to increase the likelihood that it will provide the first reference to
main. If it came second, then maybe resolving a symbol from the first object file leads to a
reference that is resolved by a library, and that in turn requests a reference to main, and
now the special library search rule kicks in.

It may be difficult to ensure that forcemain.obj comes first. For example, some tooling
might sort the object files alphabetically, or somebody might just decide to sort them
alphabetically as part of just making things more tidy," causing forcemain.obj to lose its
special place at the front of the object list.

Therefore, | like to use the /INCLUDE trick.
link /out:fuzzer.exe /subsystem:console fuzzer.obj cx.obj lib.lib /INCLUDE:main

rem success!

The compiler team tells me that references injected via /INCLUDE get ushered to the front
of the line, so they get resolved before any references that come from the object files
themselves. In this case, it means that /INCLUDE:main ensures that main is resolved
before any symbols from object files, thereby removing the dependency on the order of
object files.

My colleague Martyn Lovell noted that even though you can cobble together something
that works, he considers it generally a mistake to put your entry point in a library. Libraries
generally carry the meaning of “Use this only if necessary,” but in the case of the fuzzing
library, their specific main function is mandatory, not a fallback. This is a problem |
discussed earlier in the context of choosing between winvMain and wwinMain.

The entry point should be in an explicit object file that is added to the project, or (my
preferred option) the library should provide its main function under a name like
fuzzer_main which programs are expected to forward to.

2/3

https://learn.microsoft.com/en-us/archive/blogs/martynl/
https://devblogs.microsoft.com/oldnewthing/20241004-00/?p=110338

// fuzzer.cpp
#include <fuzzerlibrary.h>
int _ _cdecl main(int argc, char** argv)

‘ return fuzzer_main(argc, argv);
}
bool fuzzer_callback(void* data, int length)
{
r ... 1
}

This also allows you to do things like choose between two fuzzers at runtime, or run
multiple fuzzers from a single binary or run the same fuzzer twice.

// fuzzer.cpp

#include <fuzzerlibraryl.h>

#include <fuzzerlibrary2.h>

int __cdecl main(int argc, char** argv)

{
// If run with no arguments, then provide
// some defaults.
if (argc == 1) {
static char argil[] = "default-argumentl1";
static char arg2[] = "default-argument2";
static char* args[] = { argv[0], argl, arg2 };
argc = 3;
argv = args;
}
// Run it through both fuzzers
int result = fuzzerl_main(argc, argv);
if (result == 0) {
result = fuzzer2_main(argc, argv);
}
}
return result;
}
bool fuzzer_callback(void* data, int length)
{
r ... 1
}

Now, for convenience, the fuzzer library could also provide the main function that we put
into fuzzer.cpp. But even so, there should be a separate name (like fuzzer _main) that
can be used to invoke it explicitly.

' For example, keeping lists in alphabetical or numeric order reduces the likelihood of bad
merges.

3/3

