
1/2

June 26, 2025

Why do I get errors about some weird symbol called ?
main@@YAHP$01E$AAV?
$Array@PE$AAVString@Platform…, part 2

devblogs.microsoft.com/oldnewthing/20250626-00/?p=111314

We are investigating why a project is getting an error about a weird C++/CX symbol, and
we thought we had figured it out, but our attempt to replicate the problem with a minimal
example failed. So we must have removed something important from the example.

Since the problem occurred when the project involved C++/CX, let’s add C++/CX to our
minimal example. Maybe that will tell us something.

rem create a minimal fuzzer library

>lib.cpp echo void fuzzme(); int __cdecl main(int, char**) { fuzzme(); return 42;
}

cl /c lib.cpp

lib /out:lib.lib lib.obj

rem create our fuzzer plugin

>fuzzer.cpp echo void fuzzme() {}

cl /c fuzzer.cpp

rem new! Add a superfluous C++/CX component

>cx.cpp echo ref class Dummy {};

cl /c /EHsc /ZW cx.cpp

rem Try to link them all together

link /out:fuzzer.exe /subsystem:console fuzzer.obj cx.obj lib.lib

Output:

vccorlib.lib(climain.obj) : error LNK2019: unresolved external symbol "?
main@@YAHP$01E$AAV?$Array@PE$AAVString@Platform@@$00@Platform@@@Z" (?
main@@YAHP$01E$AAV?$Array@PE$AAVString@Platform@@$00@Platform@@@Z) referenced in
function "int __cdecl _main(void)" (?_main@@YAHXZ)

Okay, now we get the error.

So the presence of cx.obj introduces the problem.

https://devblogs.microsoft.com/oldnewthing/20250626-00/?p=111314
https://devblogs.microsoft.com/oldnewthing/20250625-00/?p=111306

2/2

Let’s go back to the verbose log to see where cx.obj enters the picture.

Actually, something interesting jumps out right at the start.

Starting pass 1

Processed /DEFAULTLIB:LIBCMT

Processed /DEFAULTLIB:OLDNAMES

Processed /DEFAULTLIB:vccorlib.lib

Processed /DEFAULTLIB:MSVCRT

These two libraries got added as default libraries, and that’s how vccorlib.lib became
one of the libraries participating in the module.

If we dig into cx.obj, we can see where it requests those libraries.

link /dump /all cx.obj | findstr /i defaultlib

Output:

 /DEFAULTLIB:vccorlib.lib

 /DEFAULTLIB:MSVCRT

 /DEFAULTLIB:OLDNAMES

The compiler injects requests for three default libraries into cx.obj, so that’s how
vccorlib.lib joins the set of default libraries.

This explains why cx.obj is essential to the repro: It is cx.obj that pulls in vccorlib.lib,
which means that a search for main finds the version in vccorlib.lib before it finds the
one we want in lib.lib.

Now that we understand the source of the problem, we’ll look at trying to fix it. Next time.

