Thread pool threads are like preschool: Leave things
the way you found them

=. devblogs.microsoft.com/oldnewthing/20250613-00/?p=111268

June 13, 2025

A customer wanted to use the Windows thread pool, but they also wanted to use COM
from their work item. They saw in the COM documentation that each thread must call co-
Initialize(Ex) before using COM, so they planned on doing something like this:

thread_local bool isComInitialized = false;

auto DowWorkOnBackground()

{
return TrySubmitThreadpoolCallback(

WorkFunction, nullptr, nullptr);
}

void CALLBACK WorkFunction(
[[maybe_unused]] PTP_CALLBACK_INSTANCE instance,
[[maybe_unused]] void* context)

{
if (!isComInitialized) {
CoInitializeEx(nullptr, COINIT_APARTMENTTHREADED);
isComInitialized = true;
}
[ do some work ]
}

The idea is that before each work function runs, it checks whether it has already initialized
COM in apartment threaded mode for this thread. If not, it does the initialization, and then
it remembers that the initialization has been done so it won’t do it again.

The problem with this approach is that it initializes COM on a thread pool thread but fails
to clean up the initialization before returning the thread to the thread pool. The nickname
for a thread in the thread pool that has been left in a bad state is poisoned.

When the next task runs on that thread, it will be running on a COM single-threaded

apartment even though it didn’t expect to. That thread might perform a long blocking
operation like waitForsingleObject, thinking that it's safe to do so because it's on a
background thread. Unfortunately, it's secretly running on a COM single-threaded

1/2


https://devblogs.microsoft.com/oldnewthing/20250613-00/?p=111268

apartment, which is required to pump messages while waiting. The result is that you now
have a Ul thread that has stopped pumping messages, and the system will mark it as
unresponsive. And the system might be broadcasting a message to all windows, and that
includes the helper window that COM created to manage inbound calls to the single-
threaded apartment. The broadcast hangs, and now you have problems like hangs in the
SystemParametersInfo function or 30-second hangs when opening documents waiting
for the DDE timeout.

Indeed, the problem occurs even before the thread is used to run another task. If there
are no tasks waiting to run, then the thread is returned to the thread pool, where the
thread simply blocks waiting for work. This block happens without pumping messages
because the thread pool has no expectation that anybody just left windows lying around
on the thread. And then you get the same problem of broadcast hangs.

Even if you don’t get a broadcast hang, the next task that runs on the thread pool thread
might do a CoInitializeEx(COINIT_MULTITHREADED) to initialize the thread in the
multithreaded apartment, and it will get the error RPC_E_CHANGED_MODE. There is really no
recovery from this, so the task will fail, and then the poisoned thread pool thread gets
returned to the thread pool, ready to terrorize the next task.

So leave thread pool threads the same way you found them. If you initialize COM, then
uninitialize it. If you change the thread priority, then set it back. If you change the thread
execution state to “continuous display required”, then change it back. That thread does
not belong to you. You were merely given permission to borrow it. You are a guest in
someone else’s house: If you want to put up your own posters, remember to take them
down when you leave.

Bonus chatter: Don'’t forget to do your cleanup even if the task fails. Using a C++ RAllI
type makes it easy to ensure that the cleanup occurs no matter how the function exits.

2/2


https://devblogs.microsoft.com/oldnewthing/20050310-00/?p=36233
https://devblogs.microsoft.com/oldnewthing/20060210-00/?p=32323

