Why does Windows even have Interlocked functions
when we have std::atomic?

=. devblogs.microsoft.com/oldnewthing/20250612-00/?p=111265

June 12, 2025

Windows provides a family of functions for performing atomic operations. They have the
word Interlocked in their name. But why do these functions even exist when we have
std::atomic?

This is similar to asking why they didn’t use the Space Shuttle to rescue the Apollo 13
astronauts. You have the history wrong.

Multithreading and atomic operations were not added to the C and C++ languages until
C11 and C++11 (respectively), but Windows was doing multithreading since Windows NT
3.1, which released in 1993. Compilers of that era typically did not include intrinsics for
atomic operations, so if you needed to do things atomically, you had to call to an outside
function.

The Windows Interlocked functions were those outside functions. Originally, the only
operations were to increment, decrement, or exchange a 4-byte value. (And the
increment and decrement operations didn’t even tell you the result of the
increment/decrement, only the sign.) Gradually, other operations were added, and the
size of the operated-on value was expanded to include pointer-sized values.

In the meantime, compilers realized that maybe they should add intrinsics for atomic
operations, and the C and C++ standards committees realized that atomic operations
would be a nice thing to standardize, so they added Atomic and std::atomic.

So which one should you use?

If you are coding in C or C++, you may as well use the language built-in operations.
Nowadays, the compiler can inline the atomic operations, rather than taking the expense
of a function call. And they also can optimize around them, or not optimize around them,
which is probably even more important.

So why do the Interlocked functions still exist?

1/2


https://devblogs.microsoft.com/oldnewthing/20250612-00/?p=111265
https://devblogs.microsoft.com/oldnewthing/20110119-00/?p=11723
https://devblogs.microsoft.com/oldnewthing/20040506-00/?p=39463

The implementations of the Interlocked functions are typically quite small, so leaving
them around doesn’t incur much of a cost. And they are still necessary if you want to
perform atomic operations from languages that don’t have built-in atomics.

Bonus chatter: Nowadays, the interlocked functions are typically defined for C and C++

consumers in terms of compiler intrinsics, so at the end of the day, it really doesn’t matter.

They all end up turning into compiler intrinsics if you are coding in C and C++.

2/2



