Why does C++ think my class is copy-constructible
when it can’t be copy-constructed?

=. devblogs.microsoft.com/oldnewthing/20250606-00/?p=111254
June 6, 2025

Consider the following scenario:

template<typename T>
struct Base

{
// Default-constructible
Base() = default;
// Not copy-constructible
Base(Base const &) = delete;
}

template<typename T>
struct Derived : Base<T>

{
Derived() = default;

Derived(Derived const& d) : Base<T>(d) {}
}

// This assertion passes?
static_assert(
std::is_copy_constructible_v<Derived<int>>);

Why does this assertion pass? It is plainly evident that you cannot copy a berived<int>
because doing so will try to copy the Base<int>, which is not copyable. Indeed, if you try
to copy it, you get an error:

void example(Derived<int>& d)
{
Derived<int> d2(d);
// msvc: error C2280: 'Base<T>::Base(const Base<T> &)':

// attempting to reference a deleted function
// gcc: error: use of deleted function 'Base<T>::Base(const Base<T>&)
// [with T = int]'

// clang: error: call to deleted constructor of 'Base<int>'


https://devblogs.microsoft.com/oldnewthing/20250606-00/?p=111254
https://devblogs.microsoft.com/oldnewthing/20240517-00/?p=109774

Okay, so the compiler thinks that berived<int> is copy-constructible, but then when we
try to do it, we find out that it isn’t!

What's going on is that the compiler is determining copy-constructibility by checking
whether the class has a non-deleted copy constructor. And in the case of Derived<T> it
does haev a non-deleted copy constructor. You declared it yourself!

Derived(Derived const& d) : Base<T>(d) {}

So yes, there is a copy constructor. It can’t be instantiated, but the compiler doesn’t care.
It is going based on what you tell it, and you told it that you can copy it.

After all, another possibly copy constructor would have been

Derived(Derived const& d) : Base<T>() {}

and this one instantiates successfully. Copying a berived default-constructs the Base
base class rather than copy-constructing it.

Imagine that we moved the definition out of line.

template<typename T>
struct Derived : Base<T>

{
Derived() = default;

Derived(Derived const& d);

i

What should the answer to the question “Is this copy-constructible?” be? You don’t know
what the definition is, only its declaration. Should the compiler halt compilation with the
error message “Unable to predict the future”? But what if you didn’t want the expose the
implementation of the copy constructor in the header file?

The rule for determining copy constructibility is whether a non-deleted copy constructor is
present. In the case of Derived, it is present. It may not be instantiatable, but that’s not
what is_copy constructible looks for.!

Now, non-copyability inherits by default, so we could have just allowed the copy
constructor to be defaulted:

template<typename T>
struct Derived : Base<T>

{
Derived() = default;

Derived(Derived const& d) = default;

};

The implicitly-defined or explicitly-defaulted copy constructor is defined as deleted if any
base class is not copy-constructible, in which case the declaration is treated as if it had
said = delete. That = delete can be detected by is copy constructible and resultin
the assertion failing.

2/3



But if you come out and make a custom copy constructor that is not deleted, the compiler
assumes you will make good on your promise.

Related reading: Why does std: :is copy_constructible report that a vector of move-
only objects is copy constructible?

' Requiring that the type be complete and all members defined is not a reasonable
requirement because that would require definitions of all class methods to be present in
header files. Your entire program has been reduced to a header-only project.

3/3


https://devblogs.microsoft.com/oldnewthing/20190926-00/?p=102924

