
1/2

June 5, 2025

Why do some Windows functions fail if I pass an
unaligned Unicode string?

devblogs.microsoft.com/oldnewthing/20250605-00/?p=111250

A customer found that if they passed Unicode strings (which in Windows means strings
encoded as UTF-16LE using the two-byte data type wchar_t as code units) which are not
on even addresses, then some—but not all—functions fail to accept those strings. Why
isn’t this documented?

This is one of the ground rules for programming: Pointers must be properly aligned unless
explicitly permitted otherwise.

In the C and C++ languages, forming an unaligned pointer is explicitly specified to return
no useful value.

In C:

(6.3.2.3 Pointers) If the resulting pointer is not correctly aligned for the referenced
type, the behavior is undefined.

In C++:

[expr.static.cast](13) If the original pointer value represents the address A of a byte
in memory and A does not satisfy the alignment requirement of T, then the resulting
pointer value is unspecified.

Therefore, simply creating a misaligned pointer already takes you outside the world of
allowable (in C) or at least meaningful (in C++) operations, so you shouldn’t be surprised
that using misaligned pointers results in nonsense.

As for why certain functions get more upset than others, it’s all a matter how how those
functions use the pointers and who detects the misaligned pointer.

If you are using a processor that is alignment-sensitive, you will probably get a failure
when the code tries to read the data from that pointer. If the access is made in user
mode, you will get an access violation exception, and the process will probably crash. If

https://devblogs.microsoft.com/oldnewthing/20250605-00/?p=111250
https://devblogs.microsoft.com/oldnewthing/20060320-13/?p=31853

2/2

the access is made in kernel mode, the kernel mode parameter validator will probably
return an invalid parameter error. (Kernel mode must protect itself from user mode.)

If you are using a processor that forgives misaligned data accesses, then you may get
away with it for a while, until the code does something with the data that requires
alignment. For example, atomic operations typically require aligned data, even on
processors that are normally forgiving of misalignment.

And even though x86-64 is generally alignment-forgiving, there are still places where it is
alignment sensitive. For example, some instructions involving SIMD registers require
alignment. SIMD registers are often used for copying blocks of memory around, and since
wchar_t has 2-byte alignment, the switch statement for performing block copies has only
8 legal starting points out of 16, since all the odd addresses are invalid. If you pass an
odd address, you might well fall through the switch statement and perform garbage
copies.

The Microsoft C++ compiler has a special nonstandard keyword __unaligned for
declaring that a pointer may be unaligned, and this tells the compiler that any accesses to
the data behind that pointer must use instructions that are alignment-forgiving. For some
processors, this can be quite expensive.

Limit your use of misaligned pointers to places where misaligned pointers are expressly
permitted. You can tell where those places are by looking for the Windows SDK macro
UNALIGNED. For example:

LWSTDAPI_(int)

 SHFormatDateTimeA(

 In const FILETIME UNALIGNED * pft,

 _Inout_opt_ DWORD * pdwFlags,

 _Out_writes_(cchBuf) LPSTR pszBuf,

 UINT cchBuf);

https://devblogs.microsoft.com/oldnewthing/20200103-00/?p=103290

