How can | detect if one of my helper processes is
launching child processes?

=. devblogs.microsoft.com/oldnewthing/20250523-00/?p=111216
May 23, 2025

A customer’s program has a plug-in model. They already run the plug-ins in a separate
process, but they wanted to understand, among other things, whether any of those plug-
ins in turn launch child processes of their own. This would help them evaluate ideas for
improving their plug-in model and reach out to plug-in authors who may be affected. They
asked for ideas on how they could instrument this.

One of the things they considered was patching the import address table for all of the
CreateProcess* functions so they could intercept attempts to create a child process.
Another thing they considered was using the existing Detours library. They asked which
method was better.

Better is not to do either of these things.

Instead, you can put the plug-in host process in a job object, and then monitor the job
object. Specifically, job objects will queue the JOB 0BJECT MSG_NEW_PROCESS completion
when a new process is created, and it will queue the J0B_OBJECT MSG_EXIT_ PROCESS oOr
JOB_OBJECT_MSG_ABNORMAL_EXIT_ PROCESS completion when a process exits. (The system
uses the process exit code to decide whether an exit was abnormal.)

So let’'s demonstrate this. We start with the existing Little Program that creates a job
object and listens for completions and listen for the additional completions.

1/3


https://devblogs.microsoft.com/oldnewthing/20250523-00/?p=111216
https://devblogs.microsoft.com/oldnewthing/20130405-00/?p=4743

#define UNICODE
#define _UNICODE
#define STRICT
#include <windows.h>
#include <stdio.h>
#include <atlbase.h>
#include <atlalloc.h>
#include <shlwapi.h>

int _ _cdecl wmain(int argc, PWSTR argv[])

{

CHandle Job(CreateJobObject(nullptr, nullptr));

if (!'Job) {
wprintf(L"CreateJobObject, error %d\n", GetLastError());
return 0;

}

CHandle IOPort(CreateIoCompletionPort(INVALID_HANDLE_VALUE,
nullptr, 0, 1));
if ('IOPort) {
wprintf(L"CreateIoCompletionPort, error %d\n'",
GetLastError());
return 0;

}

JOBOBJECT_ASSOCIATE_COMPLETION_PORT Port;

Port.CompletionKey = Job;

Port.CompletionPort = IOPort;

if (!SetInformationJobObject(Job,
JobObjectAssociateCompletionPortInformation,
&Port, sizeof(Port))) {

wprintf(L"SetInformation, error %d\n", GetLastError());

return 0;

}

PROCESS_INFORMATION ProcessInformation;
STARTUPINFO StartupInfo = { sizeof(StartupInfo) };
PWSTR CommandLine = PathGetArgs(GetCommandLine());

if (!CreateProcess(nullptr, CommandLine, nullptr, nullptr,
FALSE, CREATE_SUSPENDED, nullptr, nullptr,
&StartupInfo, &ProcessInformation)) {
wprintf(L"CreateProcess, error %d\n", GetLastError());
return 0;

}

if (!'AssignProcessToJobObject(Job,
ProcessInformation.hProcess)) {
wprintf(L"Assign, error %d\n", GetLastError());
return 0,

}


https://devblogs.microsoft.com/oldnewthing/20040212-00/?p=40643

ResumeThread(ProcessInformation.hThread);
CloseHandle(ProcessInformation.hThread);
CloseHandle(ProcessInformation.hProcess);

DWORD CompletionCode;
ULONG_PTR CompletionKey;
LPOVERLAPPED Overlapped;

while (GetQueuedCompletionStatus(IOPort, &CompletionCode,
&CompletionKey, &Overlapped, INFINITE)) {
if ((HANDLE)CompletionKey == Job) {

if (CompletionCode == JOB_OBJECT_MSG_ACTIVE_PROCESS_ZERO) {
break; // all processes have exited - done

} else if (CompletionCode == JOB_OBJECT_MSG_NEW_PROCESS) {
wprintf(L"Process %d created\n", PtrToInt(Overlapped));

} else if (CompletionCode == JOB_OBJECT_MSG_EXIT_PROCESS) {
wprintf(L"Process %d exited\n", PtrToInt(Overlapped));

} else if (CompletionCode == JOB_OBJECT_MSG_ABNORMAL_NEW_PROCESS) {
wprintf(L"Process %d exited abnormally\n", PtrToInt(Overlapped));

wprintf(L"All done\n");

return 0,

}

The original program checked only for J0B_0BJECT_MSG_ACTIVE_PROCESS_ZERO to exit the
loop, but we added handlers for the three process-create/exit completion codes. (These
code do not exit the loop.)

Left as an exercise (for further diagnostics) is using the process ID to get information like
the path to the process. Note that there is a race condition if the process is very short-
lived and exits before you can get any information from it.

3/3



