
1/4

May 21, 2025

Silly parlor tricks: Promoting a 32-bit value to a 64-bit
value when you don’t care about garbage in the upper
bits

devblogs.microsoft.com/oldnewthing/20250521-00/?p=111205

Suppose you have a function that wants to pass a 32-bit value to a function that takes a
64-bit value. You don’t care what goes into the upper 32 bits because that value is a
passthrough value that gets passed to your callback function, and the callback function
will truncate it to a 32-bit value. And for whatever reason, you are concerned about the
performance impact of that single instruction that the compiler normally generates to
extend the 32-bit value to a 64-bit value.

My first take is “Don’t worry yet.” I suspect that that one instruction is not going to be a
performance bottleneck in your program.

But still, I took up the challenge, just for fun.

What I came up with was using gcc/clang inline assembly that says “I can produce a 64-
bit value from a 32-bit value by executing no instructions.”

int64_t int32_to_64_garbage(int32_t i32)

{

 int64_t i64;

 __asm__("" : // do nothing

 "=r"(i64) : // produces result in register

 "0"(i32)); // from this input

 return i64;

}

The first argument to the __asm__ inline directve is the code to generate. We pass an
empty string, so there is in fact no code generated at all! All the effects we want are in the
declarations of inputs and outputs.

Next come the outputs, of which we have only one. The "=r"(i64) means that our inline
assembly will put the overwritten (=) value of i64 in a register r of the compiler’s
choosing, which the inline assembler will refer to as %0. (The outputs are numbered
starting at zero.)

https://devblogs.microsoft.com/oldnewthing/20250521-00/?p=111205

2/4

Finally, we have the inputs, of which we have only one. The "0"(i32) means that the
input should be put in the same place as output number zero.

All of the work was done by our constraints on the inputs and outputs. There’s no actual
code. We tell the compiler “Put i32 in a register, and then cover your eyes, and when you
open them, i64 will be in that same register!”

Running gcc at optimization level 3 shows that the value was completely elided.

void somewhere(int64_t);

void sample1(int32_t v)

{

 somewhere(v);

}

void sample2(int32_t v)

{

 somewhere(int32_to_64_garbage(v));

}

The result is

// x86-64

sample1(int):

 movsx rdi, edi

 jmp somewhere(long)

sample2(int):

 jmp somewhere(long)

// arm32

sample1(int):

 asrs r1, r0, #31

 b somewhere(long long)

sample2(int):

 b somewhere(long long)

// arm64

sample1(int):

 sxtw x0, w0

 b somewhere(long)

sample2(int):

 b somewhere(long)

The first version contains an explicit sign extension instruction before making the tail call.
The second version is a direct tail call, using whatever garbage is in the upper 32 bits of
the rdi register.

Another compiler that supports gcc extended inline syntax is icc, and this trick seems to
work there too.

3/4

// x86-64

sample1(int):

 movsxd rdi, edi

 jmp somewhere(long)

sample2(int):

 jmp somewhere(long)

The clang compiler also supports gcc extended inline assembly syntax. It, however, not
only generates a conversion but also loses the tail call.

// x86-64

sample1(int):

 movsxd edi, edi

 jmp somewhere(long)@PLT

sample2(int):

 push rax

 mov edi, edi

 call somewhere(long)@PLT

 pop rax

 ret

// arm32

sample1(int):

 asr r1, r0, #31

 b somewhere(long long)

sample2(int):

 push {r11, lr}

 sub sp, sp, #8

 mov r1, #0

 bl somewhere(long long)

 add sp, sp, #8

 pop {r11, pc}

// arm64

sample1(int):

 sxtw x0, w0

 b somewhere(long)

sample2(int):

 sub sp, sp, #32

 stp x29, x30, [sp, #16]

 add x29, sp, #16

 mov w0, w0

 bl somewhere(long)

 ldp x29, x30, [sp, #16]

 add sp, sp, #32

 ret

Update: It seems that the current version of clang (as of this writing) restores the tail call,
though it still does a 32-to-64 unsigned conversion, so the cost is basically the same.

4/4

// x86-64

sample1(int):

 movsxd edi, edi

 jmp somewhere(long)@PLT

sample2(int):

 mov edi, edi

 jmp somewhere(long)@PLT

// arm32

sample1(int):

 asr r1, r0, #31

 b somewhere(long long)

sample2(int):

 mov r1, #0

 b somewhere(long long)

// arm64

sample1(int):

 sxtw x0, w0

 b somewhere(long)

sample2(int):

 mov w0, w0

 b somewhere(long)

The Microsoft Visual C++ compiler does not support gcc extended inline syntax, so we
can’t check that one.

Since it doesn’t work at all with msvc and it doesn’t provide any benefit on clang, I would
enable this optimization only when compiling with gcc or icc and live with the extra
instruction everywhere else.

(But really, I wouldn’t use this anywhere unless I had to. This is just code golfing.)

