What’s with the weird wReserved value at the start of the DECIMAL

structure?

=. devblogs.microsoft.com/oldnewthing/20250516-00/?p=111185

o g

D)

The DECIMAL structure looks like this:

typedef struct tagDEC {
USHORT wReserved;
union {
struct {
BYTE scale;
BYTE sign;
}
USHORT signscale;
}
ULONG Hi32;
union {
struct {
ULONG L032;
ULONG Mid32;
}i
ULONGLONG Lo64;
}
} DECIMAL;

What is the deal with that wreserved at the front?

That reserved field comes into play when the DECIMAL is placed inside a VARIANT.

Let’s start with this simple version of VARIANT:

typedef struct tagVARIANT {
uint16_t vt;
union {
uint64_t 1llval;
uint32_t 1lval;

uint8_t bval;
int16_t ival;
[a whole bunch of other things 1]
[the largest is 8 bytes 1
[and requires 8-byte alignment]
}
} VARIANT;

May 16, 2025

This simple version is a discriminated union with a large number of possible types. The largest such type is 8 bytes in size
and has an alignment of 8 bytes. This means that there are 6 bytes of padding between the discriminant vt and the union.

0123456789 ABCDEF

vt (padding) payload

Let’'s add the padding explicitly.

1/4

https://devblogs.microsoft.com/oldnewthing/20250516-00/?p=111185

typedef struct tagVARIANT {
uint16_t vt;
uintl16_t padil;
uint16_t pad2;
uintl6_t pad3;
union {
uint64_t 1llval;
uint32_t 1lval;
uint8_t bval;
intl6_t ival;
[a whole bunch of other things 1
[the largest is 8 bytes 1
[and requires 8-byte alignment 1]
}
} VARIANT;

0123 4567 8 9 ABCDEF

vt pad1 pad2 pad3 payload

Now, the DECIMAL type wants to hold a scaled decimal value, so we’ll need at least a byte for the scale, a bit for the sign,
and a lot of bits for the mantissa. If we had to squeeze the DECIMAL inside the payload field, there would be only 64 bits

available. But wait, there are these extra 48 bits of padding. Maybe we can steal them to hold the scale, sign, and more
mantissa bits.

o012 3 4 5 6 7 89 ABCDTEF

vt (LCAN HAZ MOAR PAYLOAD?) payload

Great, we found an additional place to stash 48 bits of information.

Our goal is to have the VARIANT laid out like this:

01 2 3 4 5 6 7 8 9 AB CDEF

vt pad1 pad2 pad3 payload for non-DECIMAL

scale sign mantissa_high mantissa_low for DECIMAL

So let’s declare our DECIMAL structure so that it can nestle right in after the vt:

typedef struct tagDECIMAL
{

uint8_t scale;

uint8_t sign;

uint32_t mantissa_high;

uint64_t mantissa_low;
} DECIMAL;

typedef struct tagVARIANT

{
uint16_t vt;
union {
DECIMAL decval;
struct {
uint16_t padi;
uintil6_t pad2;
uint16_t pad3;
union {
uinté4_t 1lval;
uint32_t lval;
uint8_t bval;
int16_t ival;
[a whole bunch of other things]
[the largest is 8 bytes 1
[and requires 8-byte alignment]
}
}
}
¥

Oh noes! The result is

2/4

https://english.stackexchange.com/questions/20356/origin-of-i-can-haz

0123 456 7 8 9 A B CDE F 10 11 12 13 14 15 16 17

vt (padding) pad1 pad2 pad3 (padding) payload for non-
DECIMAL
(padding) scale sign (padding) mantissa_high mantissa_low for DECIMAL

Our attempt to squeeze out the padding just resulted in even more padding!

The problem is that the DECIMAL structure requires padding in order to align the two mantissa fields. There is no way to tell
the compiler to lay out a structure on the assumption that it always appears as part of a larger structure which misaligns its
start address. Mind you, even if there were a way to do it, you wouldn’t want to, because code is allowed to declare a
standalone DECIMAL structure that is not part of a VARIANT, and now your promise is broken.

The unnamed structure we introduced into our VARIANT has the same problem as DECIMAL, so it too gets alignment padding
so that the unnamed structure starts at a multiple of 8.

To get the layout we want, we must move the initial vt inside the DECIMAL.

typedef struct tagDECIMAL
{
uint16_t reserved;
uint8_t scale;
uint8_t sign;
uint32_t mantissa_high;
uint64_t mantissa_low;
} DECIMAL;

typedef struct tagVARIANT

{
union {
struct {
uint16_t vt;
uint16_t padi;
uintl16_t pad2;
uint16_t pad3;
union {
uint64_t 1lval;
uint32_t lval;
uint8_t bval;
int16_t ival;
[a whole bunch of other things 1]
[the largest is 8 bytes 1
[and requires 8-byte alignment]
}
}
DECIMAL decVval;
}
3

The resulting layout is now

o 1 2 3 4 5 6 7 8 9 AB CDEF

vt (padding) payload for non-DECIMAL

reserved scale sign mantissa_high mantissa_low for DECIMAL

When the DECIMAL is not part of a VARIANT the reserved field is unused. But if it's part of a VARIANT, it’s living a double life as
a vt, and the value will always be vT_DECIMAL.

If a VARIANT represents a DECIMAL, you have the weird case that the vt comes from the VARIANT, but the other fields come
from the DECIMAL. Back in the days when the VARIANT structure was defined, this sort of data punning was commonplace,
and nobody would have batted an eye.

Fortunately, even though compiler-writers might cast side-eye at this sort of thing, the trick is legal in this case because the
vt and wreserved fields are both defined as unsigned short and therefore satisfy the “common initial sequence” rule. This
rule permits accessing the part of a non-active union member that shares a common initial sequence with the active union
member. The basic idea is that you look for the longest stretch of initial elements of the two union members that agree in
type, and those members can be read from one union member even if the other union member is the active member. (There
is of course lots of fine print, but that's the basic idea.)

3/4

https://devblogs.microsoft.com/oldnewthing/20240731-00/?p=110069

Bonus reading: Type Punning, Strict Aliasing,_and Optimization by John Regehr.

4/4

https://blog.regehr.org/archives/959

