
1/3

May 8, 2025

Why doesn’t Clipboard History capture rapid changes
to clipboard contents?

devblogs.microsoft.com/oldnewthing/20250508-00/?p=111162

A customer was trying to write a tool to preload items into the clipboard history. In a way,
this is sort of the opposite of history. Instead of looking backward to things that were once
on the clipboard in the past, they want to look forward into the future and preload things
that they anticipate you are soon going to wish were on the clipboard. Here’s a stripped-
down version.

https://devblogs.microsoft.com/oldnewthing/20250508-00/?p=111162

2/3

// All error checking elided for expository purposes

#include <windows.h>

void SetClipboardText(HWND hwnd, PCWSTR text)

{

 OpenClipboard(hwnd);

 EmptyClipboard();

 auto size = sizeof(wchar_t) * (1 + wcslen(text));

 auto clipData = GlobalAlloc(GMEM_MOVEABLE, size);

 auto buffer = (LPWSTR)GlobalLock(clipData);

 strcpy_s(buffer, size, text);

 GlobalUnlock(clipData);

 SetClipboardData(CF_UNICODETEXT, clipData);

 CloseClipboard();

}

// Put these strings in the clipboard history for quick access.

static constexpr PCWSTR messages[] = {

 L"314159", // the bug number we want to edit

 L"e83c5163316f89bfbde7d9ab23ca2e25604af290", // the commit to link the bug to

 L"Widget polarity was set incorrectly.", // the comment to add

};

int wmain([[maybe_unused]] int argc,

 [[maybe_unused]] wchar_t* argv[])

{

 auto tempWindow = CreateWindowExW(0, L"static", nullptr, WS_POPUPWINDOW,

 0, 0, 0, 0, nullptr, nullptr, nullptr, nullptr);

 for (auto message : messages)

 {

 SetClipboardText(tempWindow, message);

 }

 DestroyWindow(tempWindow);

 return 0;

}

This program sets three strings onto the clipboard one after the other. But when you run
it, only the last string makes it into the clipboard history. What happened to the other two?

The clipboard history service operates asynchronously. It registers for clipboard changes
via AddClipboardFormatListener, and when it receives a change notification, it updates
the clipboard history. The listener is notified asynchronous, however, so by the time the
listener receives the WM_CLIPBOARDUPDATE message, the clipboard may have changed a
second time.

This is different from clipboard viewers, which are notified synchronously when the
clipboard changes. The downside is that you might miss out on clipboard changes. The
much better upside is that you don’t slow down or hang the clipboard.

In practice, missing every little clipboard change is sort of a feature of the clipboard
history service. I can imagine that there are programs that just spam the clipboard with a
rapid sequence of clipboard changes. All of the intermediate ones are useless because

https://devblogs.microsoft.com/oldnewthing/20110919-00/?p=9613

3/3

they are never on the clipboard long enough for the user to paste them. Only the last one
really counts from an end-user point of view, so it’s reasonable that the clipboard history
service matches what the user sees on the clipboard.

Next time, we’ll see what we can do to repair this program.

