
1/3

April 30, 2025

Why does Windows have trouble finding my Win32
resource if it contains an accented character?

devblogs.microsoft.com/oldnewthing/20250430-00/?p=111129

Maurice Kayser reported an issue with Win32 API loading of PE resources containing
lowercase letters. Maurice did some experiments adding resources named MyIcon,
MyIcÖn, and MyIcön, then trying to load them using various names, and built up a table
of results. I’ve broken it up into three tables depending on the nature of the accented
character.

Arg Can load MyIcon Can load MyIcÖn Can load MyIcön

myicon Yes No No

MyIcon Yes No No

mYiCoN Yes No No

MYICON Yes No No

This table shouldn’t be surprising. The argument passed to LoadResource is compared
case-insensitively with the name of the resource, treating accented characters as different
from their unaccented versions.

Here’s the next batch.

Arg Can load MyIcon Can load MyIcÖn Can load MyIcön

myicÖn No Yes No (!)

MyIcÖn No Yes No (!)

mYiCÖN No Yes No (!)

MYICÖN No Yes No (!)

The first column is consistent with our previous result, namely that unaccented characters
are treated as not the same as accented characters.

https://devblogs.microsoft.com/oldnewthing/20250430-00/?p=111129
https://learn.microsoft.com/en-us/answers/questions/2155202/issue-with-win32-api-loading-of-pe-resources-conta


2/3

The second column is not surprising either, since the strings do match according to a
case-insensitive comparison.

The third column is surprising. It seems that accented characters are case-sensitive, even
though the documentation says that the comparison is case-insensitive.

Okay, here’s the third block.

Arg Can load MyIcon Can load MyIcÖn Can load MyIcön

myicön No Yes (?) No (!)

MyIcön No Yes (?) No (!)

mYiCöN No Yes (?) No (!)

MYICöN No Yes (?) No (!)

The PE specification says that the resources are sorted “in ascending order”, and the
names are sorted “by case-sensitive string.”¹

That’s all it says. The rest is left to interpretation.

First of all, even though the file format specification says that the resource names can be
in any case, the FindResource function converts all names to uppercase before
searching, so any names with lowercase characters are effectively unfindable.
Fortunately, the Resource Compiler also converts names to uppercase before storing
them in the resources, so it all cancels out, right?

Well, it cancels out only if the Resource Compiler and the FindResource function agree
on how the names are converted to uppercase.

The Resource Compiler uses _wcsupr to convert the names to uppercase, and _wcsupr
uses the default C locale,² which as we noted before, is not a very interesting locale. It
converts Latin unaccented lowercase letters a-z to Latin unaccented uppercase letters A-
Z, and that’s all.

Let’s update the top row of the table by converting the names to uppercase according to
the C locale.

Arg Can load MYICON Can load MYICÖN Can load MYICöN

How does the FindResource function convert strings to uppercase? It uses the uppercase
table corresponding to the system default language. It is almost certain that Ö and ö are
uppercase and lowercase partners in the system default language. That means that the
left columns are all effectively MYICON in the first table, and that they are all effectively
MYICÖN in the second and third tables.

https://devblogs.microsoft.com/oldnewthing/20250206-00/?p=110846


3/3

With these adjustments, the tables make more sense.

Arg
Loaded


as

Can load MyIcon Can load MyIcÖn Can load MyIcön

Stored as MYICON Stored as MYICÖN Stored as load MYICöN

myicon MYICON Yes No No

MyIcon

mYiCoN

MYICON

myicÖn MYICÖN No Yes No

MyIcÖn

mYiCÖN

MYICÖN

myicön

MyIcön

mYiCöN

MYICöN

Okay, so after we have accounted for how the Resource Compiler stores names and how
FindResource searches for names, the table looks less bonkers.

The moral of the story, I think, is that you should just stick to ASCII characters for
resource names. Everybody agrees on that subset.

¹ Note that the specification is incomplete: It doesn’t say what collation to use for sorting.
Does it use a locale-sensitive sort, so that Ö comes before P in German, but after P in
Swedish?³ Does it use a case-sensitive sort where all punctuation come before all
alphabetics? The FindResource function assumes that the resources are sorted
lexicographically by code unit (not code point) numerical value. Which is a good thing,
because you don’t want a file compiled on a German system to be considered corrupted
by a Swedish system.

² But what about the #pragme code_page() directive? That directive tells the Resource
Compiler how to convert quoted strings to Unicode, but it does not affect character
mapping or collation.

³ In German dictionary sorting, the letter Ö is sorted as if it had no accent mark. But in
German phone book sorting, the letter Ö is sorted as if it were two characters O + e. And
in Austrian phone book sorting, the letter Ö is sorted as if it were two characters O + ¨,
where the ¨ is treated as a character that comes after Z. And in Swedish, the letter Ö is
treated as one of the three accented characters that come after Z.

https://de.wikipedia.org/wiki/Alphabetische_Sortierung#.C3.96sterreich
https://en.wikipedia.org/wiki/Swedish_alphabet#Letters

