
1/3

April 17, 2025

The case of the feature flag that didn’t stay on long
enough, part 1

devblogs.microsoft.com/oldnewthing/20250417-00/?p=111079

There was a crash in a unit test run under the Test Authoring and Execution Framework
(TAEF, pronounced like tafe). The crashing stack looked like this:

https://devblogs.microsoft.com/oldnewthing/20250417-00/?p=111079
https://learn.microsoft.com/en-us/windows-hardware/drivers/taef/

2/3

kernelbase!RaiseFailFastException

unittests!wil::details::WilDynamicLoadRaiseFailFastException

unittests!wil::details::WilRaiseFailFastException

unittests!wil::details::WilFailFast

unittests!wil::details::ReportFailure_NoReturn<3>

unittests!wil::details::ReportFailure_Base<3,0>

unittests!wil::details::ReportFailure_Hr<3>

unittests!wil::details::in1diag3::_FailFast_Unexpected

unittests!WidgetRouter::GetInstance

unittests!winrt::Component::implementation::Widget::Close

unittests!winrt::Component::implementation::Widget::~Widget

unittests!winrt::impl::heap_implements<⟦...⟧>::`scalar deleting destructor'

unittests!winrt::implements<⟦...⟧>::Release

unittests!std::vector<winrt::Windows::Foundation::IClosable>::~vector

unittests!std::vector<winrt::Windows::Foundation::IClosable>::clear

unittests!WidgetRouter::~WidgetRouter

unittests!WidgetRouter::GetInstance'::`2'::`dynamic atexit destructor for
'singleton''

ucrtbase!<lambda_⟦...⟧>::operator

ucrtbase!__crt_seh_guarded_call<int>::operator()<<lambda_⟦...⟧>>

ucrtbase!_execute_onexit_table

ucrtbase!__crt_state_management::wrapped_invoke

unittests!dllmain_crt_process_detach

unittests!dllmain_dispatch

ntdll!LdrpCallInitRoutine

ntdll!LdrpProcessDetachNode

ntdll!LdrpUnloadNode

ntdll!LdrpDecrementModuleLoadCountEx

ntdll!LdrUnloadDll

kernelbase!FreeLibrary

wex_common!TAEF::Common::Private::ExecutionPeFileData::`scalar deleting
destructor'

wex_common!TAEF::Common::PeFile::~PeFile

te_loaders!WEX::TestExecution::NativeTestFileInstance::`scalar deleting
destructor'

te_host!<lambda_⟦...⟧>::Execute

te_common!WEX::TestExecution::CommandThread::ExecuteCommandThread

kernel32!BaseThreadInitThunk

ntdll!RtlUserThreadStart

The team concluded that the destructor of the Widget was running at the conclusion of
this function:

void WidgetTests::BasicTests()

{

 // Force the feature flag on for the duration of this test

 auto override = std::make_unique<FeatureOverride>(NewFeatureId, true);

 auto widget = winrt::Component::Widget();

 ⟦ test the widget in various ways ⟧

 // widget naturally destructs here

}

3/3

Their conclusion was that the override was being released, and then the widget was
destructing, resulting in an assertion failure in WidgetRouter::GetInstance:

/* static method */

std::shared_ptr<WidgetRouter>

 WidgetRouter::GetInstance()

{

 assert(FeatureFlags::IsEnabled(NewFeatureId));

 static std::shared_ptr<WidgetRouter> singleton =

 std::make_shared<WidgetRouter>();

 return singleton;

}

The team theorized that perhaps there was a race condition between the release of the
widget and the lifting of the override, and their proposed fix was to release the widget
explicitly while the override is still in scope.

void WidgetTests::BasicTests()

{

 // Force the feature flag on for the duration of this test

 auto override = std::make_unique<FeatureOverride>(NewFeatureId, true);

 auto widget = winrt::Component::Widget();

 ⟦ test the widget in various ways ⟧

 widget = nullptr;

}

I commented on the pull request (which had already been completed) that this change
has no effect. The rules for C++ say that local variables are destructed in reverse order of
construction, so the widget will naturally be released as part of its destruction, and only
after that is finished will the override be released when it destructs.

The team replied that they did observe that the problem disappeared after they made
their fix, but then it came back.

Exercise: Explain why the problem went away and then came back.

Answer to exercise: I suspected that they tested their fix in their team’s test
environment, where the feature is already enabled. The fix works not because it fixed
anything but because it was never crashing in their test environment in the first place. The
defect tracker, however, doesn’t know that. It correctly reported that the bug was not
being observed in any branches that had received the fix, which was initially only their
own test branch. As the fixed merged into other branches, the bug was still not observed,
until it finally merged into a branch where their feature was disabled. At that point, the
override was actually doing something (changing a feature from disabled to enabled), and
that’s when the crashes started coming in.

