
1/3

April 11, 2025

The case of the UI thread that hung in a kernel call
devblogs.microsoft.com/oldnewthing/20250411-00/?p=111066

A customer asked for help with a longstanding but low-frequency hang that they have
never been able to figure out. From what they could tell, their UI thread was calling into
the kernel, and the call simply hung for no apparent reason. Unfortunately, the kernel
dump couldn’t show a stack from user mode because the stack had been paged out.
(Which makes sense, because a hung thread isn’t using its stack, so once the system is
under some memory pressure, that stack gets paged out.)

0: kd> !thread 0xffffd18b976ec080 7

THREAD ffffd18b976ec080 Cid 79a0.7f18 Teb: 0000003d7ca28000

 Win32Thread: ffffd18b89a8f170 WAIT: (Suspended) KernelMode Non-Alertable

SuspendCount 1

 ffffd18b976ec360 NotificationEvent

Not impersonating

DeviceMap ffffad897944d640

Owning Process ffffd18bcf9ec080 Image: contoso.exe

Attached Process N/A Image: N/A

Wait Start TickCount 14112735 Ticks: 1235580 (0:05:21:45.937)

Context Switch Count 1442664 IdealProcessor: 2

UserTime 00:02:46.015

KernelTime 00:01:11.515

nt!KiSwapContext+0x76

nt!KiSwapThread+0x928

nt!KiCommitThreadWait+0x370

nt!KeWaitForSingleObject+0x7a4

nt!KiSchedulerApc+0xec

nt!KiDeliverApc+0x5f9

nt!KiCheckForKernelApcDelivery+0x34

nt!MiUnlockAndDereferenceVad+0x8d

nt!MmProtectVirtualMemory+0x312

nt!NtProtectVirtualMemory+0x1d9

nt!KiSystemServiceCopyEnd+0x25 (TrapFrame @ ffff8707`a9bef3a0)

ntdll!ZwProtectVirtualMemory+0x14

[end of stack trace]

Although we couldn’t see what the code was doing in user mode, there was something
unusual in the information that was present.

https://devblogs.microsoft.com/oldnewthing/20250411-00/?p=111066

2/3

Observe that the offending thread is Suspended. And it appears to have been suspended
for over five hours.

THREAD ffffd18b976ec080 Cid 79a0.7f18 Teb: 0000003d7ca28000

 Win32Thread: ffffd18b89a8f170 WAIT: (Suspended) KernelMode Non-Alertable

SuspendCount 1

 ffffd18b976ec360 NotificationEvent

Not impersonating

DeviceMap ffffad897944d640

Owning Process ffffd18bcf9ec080 Image: contoso.exe

Attached Process N/A Image: N/A

Wait Start TickCount 14112735 Ticks: 1235580 (0:05:21:45.937)

Naturally, a suspended UI thread is going to manifest itself as a hang.

Functions like SuspendThread exist primarily for debuggers to use, so we asked them if
they had a debugger attached to the process when they captured the kernel dump. They
said that they did not.

So who suspended the thread, and why?

The customer then realized that they had a watchdog thread which monitors the UI thread
for responsiveness, and every so often, it suspends the UI thread, captures a stack trace,
and then resumes the UI thread. And in the dump file, they were able to observe their
watchdog thread in the middle of its stack trace capturing code. But why was the stack
trace capture taking five hours?

The stack of the watchdog thread looks like this:

ntdll!ZwWaitForAlertByThreadId(void)+0x14

ntdll!RtlpAcquireSRWLockSharedContended+0x15a

ntdll!RtlpxLookupFunctionTable+0x180

ntdll!RtlLookupFunctionEntry+0x4d

contoso!GetStackTrace+0x72

contoso!GetStackTraceOfUIThread+0x127

...

Okay, so we see that the watchdog thread is trying to get a stack trace of the UI thread,
but it’s hung inside RtlLookupFunctionEntry which is waiting for a lock.

You know who I bet holds the lock?

The UI thread.

Which is suspended.

The UI thread is probably trying to dispatch an exception, which means that it is walking
the stack looking for an exception handler. But in the middle of this search, it got
suspended by the watchdog thread. Then the watchdog thread tries to walk the stack of
the UI thread, but it can’t do that yet because the function table is locked by the UI
thread’s stack walk.

3/3

This is a practical exam for a previous discussion: Why you should never suspend a
thread.

Specifically, the title should say “Why you should never suspend a thread in your own
process.” Suspending a thread in your own process runs the risk that the thread you
suspended was in possession of some resource that the rest of the program needs. In
particular, it might possess a resource that is needed by the code which has responsible
for eventually resuming the thread. Since it is suspended, it will never get a chance to
release those resources, and you end up with a deadlock between the suspended thread
and the thread whose job it is to resume that thread.

If you want to suspend a thread and capture stacks from it, you’ll have to do it from
another process, so that you don’t deadlock with the thread you suspended.¹

Bonus chatter: In this kernel stack, you can see evidence that the SuspendThread
operates asynchronously. When the watchdog thread calls SuspendThread to suspend
the UI thread, the UI thread was in the kernel, in the middle of changing memory
protections. The thread does not suspend immediately, but rather waits for the kernel to
finish its work, and then before returning to user mode, the kernel does a CheckFor‐
KernelApcDelivery to see if there were any requests waiting. It picks up the request to
suspend, and that is when the thread actually suspends.²

Bonus bonus chatter: “What if the kernel delayed suspending a thread if it held any
user-mode locks? Wouldn’t that avoid this problem?” First of all, how would the kernel
even know whether a thread held any user-mode locks? There is no reliable signature for
a user-mode lock. After all, you can make a user-mode lock out of any byte of memory by
using it as a spin lock. Second, even if the kernel somehow could figure out whether a
thread held a user-mode lock, you don’t want that to block thread suspension, because
that would let a program make itself un-suspendable! Just call
AcquireSRWLockShared(some_global_srwlock) and never call the corresponding
Release function. Congratulations, the thread perpetually owns the global lock in shared
mode and would therefore now be immune from suspension.

¹ Of course, this also requires that the code that does the suspending does not wait on
cross-process resources like semaphores, mutexes, or file locks, because those might be
held by the suspended thread.

² The kernel doesn’t suspend the thread immediately because it might be in possession of
internal kernel locks, and suspending a thread while it owns a kernel lock (such as the
lock that synchronizes access to the page tables) would result in the kernel itself
deadlocking!

https://devblogs.microsoft.com/oldnewthing/20031209-00/?p=41573
https://devblogs.microsoft.com/oldnewthing/20150205-00/?p=44743

