
1/3

April 10, 2025

Function overloading is more flexible (and more
convenient) than template function specialization

devblogs.microsoft.com/oldnewthing/20250410-00/?p=111063

A colleague of mine was having trouble specializing a templated function. Here’s a
simplified version.

template<typename T, typename U>

bool same_name(T const& t, U const& u)

{

 return t.name() == u.name();

}

They wanted to provide a specialization for the case that the parameters are a Widget
and a string literal.

template<>

bool same_name<Widget, const char[]>(Widget const& widget, const char name[])

{

 return strcmp(widget.descriptor().name().c_str(), name) == 0;

}

However, this failed to compile:

// msvc

error C2912: explicit specialization 'bool same_name<Widget,const char[]>(const
Widget &,const char [])' is not a specialization of a function template

What do you mean “not a specialization of a function template”? I mean doesn’t it look
like a specialization of a function template? It sure follows the correct syntax for a function
template specialization.

The error message from gcc is a little more helpful:

error: template-id 'same_name<Widget, const char []>' for 'bool same_name(const
Widget&, const char*)' does not match any template declaration

Okay, so gcc recognized that it’s a specialization of a function template, but it couldn’t find
a match. What is this “match” talking about?

The error message from clang helps even more:

https://devblogs.microsoft.com/oldnewthing/20250410-00/?p=111063

2/3

error: no function template matches function template specialization 'same_name'
| bool same_name<Widget, const char[]>(Widget const& widget, const char name[])

note: candidate template ignored: could not match 'bool (const Widget &, const
const char (&)[])' against 'bool (const Widget &, const char *)'

Okay, now we’re getting somewhere. The compiler is taking the specialization we
provided and is unable to match it against the non-specialized version.

And that’s where we see the problem. If we substitute Widget and const char[] into the
original declaration of bool same_name(T const& t, U const& u), we get

 bool same_name(Widget const& t, const char(& u)[]);

But this isn’t the function signature of our proposed specialization. Our proposed
specialization takes a const char* as the final parameter, since function and array
parameters in parameter lists are rewritten as pointers: [dcl.fct](4): “any parameter of
type ‘array of T‘ or of function type T is adjusted to be ‘pointer to T‘.”

That’s what msvc was trying to tell us when it said “is not a specialization of a function
template”: “What you wrote sure looks like a specialization of a function template, but it’s
not because the signature is wrong.” Perhaps a better message would be “is not a valid
specialization of a function template” or “does not correspond to a specialization of a
function template.”

A valid specialization would be

template<>

bool same_name<Widget, const char*>(Widget const& widget, const char *const& name)

{

 return strcmp(widget.descriptor().name().c_str(), name) == 0;

}

That sure looks clunky, but it doesn’t have to be.

You don’t need to do specialization at all: You can use overloading.

bool same_name(Widget const& widget, const char* name)

{

 return strcmp(widget.descriptor().name().c_str(), name) == 0;

}

The nice thing about overloading is that you don’t have to be a perfect match for the
original template. Here, we take the second parameter by value instead of by reference.
You can even change the return value in an overload.

std::optional<bool> same_name(Widget const& widget, const char* name)

{

 if (!widget.is_name_known()) return std::nullopt;

 return strcmp(widget.descriptor().name().c_str(), name) == 0;

}

https://timsong-cpp.github.io/cppwp/dcl.fct#4

3/3

In this case, we change the return type from bool to std::optional<bool> to be able to
express the “I don’t know” case.

Function templates cannot be partially specialized, but that’s okay: You can get the same
effect via overloading.

template<typename U>

std::optional<bool> same_name(Widget const& widget, U const& u)

{

 if (!widget.is_name_known()) return std::nullopt;

 return widget.name() == u.name();

}

 Class Function

Can template Yes Yes

Can specialize Yes Yes

Can partially specialize Yes No

Can overload No Yes

Template functions: Don’t specialize them. Overload them.

