
1/2

April 9, 2025

Why can’t I use SEC_LARGE_PAGES with a file-based
file mapping?

devblogs.microsoft.com/oldnewthing/20250409-00/?p=111061

A customer wanted to create a memory-mapped file with large pages. They took the
sample code and adapted it by changing

 hMapFile = CreateFileMapping(

 INVALID_HANDLE_VALUE, // use paging file

 NULL, // default security

 PAGE_READWRITE | SEC_COMMIT | SEC_LARGE_PAGES,

 0, // max. object size

 size, // buffer size

 szName); // name of mapping object

to

 hMapFile = CreateFileMapping(

 hFile, // use a specific file

 NULL, // default security

 PAGE_READWRITE | SEC_COMMIT | SEC_LARGE_PAGES,

 0, // max. object size

 size, // buffer size

 szName); // name of mapping object

However, this failed with ERROR_INVALID_PARAMETER.

The reason for the failure is documented: The SEC_LARGE_PAGES flag cannot be used with
file-based file mappings. It can be used only with pagefile-based file mappings.

But why?

Recall that on Windows, large pages are not pageable. A non-pageable mapping backed
by the pagefile is basically memory that can never be paged out. The “backed by the
pagefile” is just an accounting artifact; the memory never actually goes to the pagefile
since it never pages out.

Although you can ensure that large pages that are file-backed never get paged out, you
still have another problem: Mappings that are backed by a file still need to be flushed
when the mapping closes. This means that you have a large page’s worth of I/O (or more

https://devblogs.microsoft.com/oldnewthing/20250409-00/?p=111061
https://learn.microsoft.com/windows/win32/memory/creating-a-file-mapping-using-large-pages
https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643

2/2

likely, multiples of them) all pending when the handle closes, and that’s not something the
memory manager has bothered implementing.

Recall that the original audience for large pages is high performance computing scenarios
where the entire system is dedicated to running a single program like SQL Server, and
those programs don’t want paging to happen in the first place. Either the entire workload
fits into memory, or you need more memory. (Related.) There’s no point implementing a
feature (large pages in memory-mapped files) that nobody has asked for.

But maybe this customer wants to ask for it. If they could explain why they needed large
pages for file-based mappings, that could help tip the scales toward convincing the
memory manager team to implement the feature.

https://devblogs.microsoft.com/oldnewthing/20180228-00/?p=98125

