
1/5

April 4, 2025

Adding delays to our task sequencer, part 3
devblogs.microsoft.com/oldnewthing/20250404-00/?p=111046

Last time, we added task throttling to our task_sequencer by limiting requests to one per
second. To do this, we used the steady_clock. The standard leaves unspecified the
resolution of the steady clock, but we can see how it is implemented on Windows by the
three major libraries.

On Windows, stl (msvc) and libcxx (clang), and libstdc++ (gcc)/mingw use Query‐
PerformanceCounter as the source of the steady_clock,¹ reporting the time to
nanosecond resolution. This is excellent resolution, but at a cost of significant arithmetic
gymnastics.

We can go cheaper.

Our throttling delay of 1 second doesn’t have to be precise down to the nanosecond. In
reality, it’ll only be as good as the hardware timer tick resolution, which is nowhere near 1
nanosecond. In practice, it’s closer to 10 milliseconds per tick, so an error of one or two
milliseconds is well under measurement error.

Therefore, we can choose to use GetTickCount64 as our steady clock source. The Get‐
TickCount64 function is quite fast (just reading a 64-bit value from memory), and it
reports at millisecond resolution, which means that it converts to TimeSpan with
multiplication and not division.

https://devblogs.microsoft.com/oldnewthing/20250404-00/?p=111046
https://devblogs.microsoft.com/oldnewthing/20250403-00/?p=111043
https://github.com/microsoft/STL/blob/7643c270e5bfb1cfad62f8b5ff4045c662bdaf81/stl/inc/__msvc_chrono.hpp#L649
https://github.com/llvm/llvm-project/blob/a222d00c667f5582194ba7e50b870312e4b4427b/libcxx/src/chrono.cpp#L191
https://github.com/gcc-mirror/gcc/blob/a6a15bc5b77c8703a95130f410a944f5408a5cc4/libstdc%2B%2B-v3/src/c%2B%2B11/chrono.cc#L79
https://github.com/msys2-contrib/mingw-w64/blob/cdb052f1d4056cd510cb83197b55868427b87476/mingw-w64-libraries/winpthreads/src/clock.c#L169

2/5

struct task_sequencer

{

 ⟦ ... ⟧

 struct completer

 {

 ~completer()

 {

 [](auto chain, auto delay) -> winrt::fire_and_forget {

 co_await winrt::resume_after(delay);

 chain->complete();

 }(std::move(chain),

 std::chrono::milliseconds(static_cast<int64_t>

 (earliest - GetTickCount64())));

 }

 std::shared_ptr<chained_task> chain;

 ULONGLONG earliest = GetTickCount64();

 };

public:

 template<typename Maker>

 auto QueueTaskAsync(Maker&& maker) ->decltype(maker())

 {

 auto node = std::make_shared<chained_task>();

 suspender suspend;

 using Async = decltype(maker());

 auto task = [&]() -> Async

 {

 completer completer{ current };

 auto local_maker = std::forward<Maker>(maker);

 auto context = winrt::apartment_context();

 co_await suspend;

 co_await context;

 completer.earliest = GetTickCount64() + 1000;

 co_return co_await local_maker();

 }();

 {

 winrt::slim_lock_guard guard(m_mutex);

 m_latest.swap(node);

 }

 node->continue_with(suspend.handle);

 return task;

 }

 ⟦ ... ⟧

};

3/5

If we really wanted to minimize the number of calls to GetTickCount64(), we could use a
std::optional:

struct task_sequencer

{

 ⟦ ... ⟧

 struct completer

 {

 ~completer()

 {

 [](auto chain, auto delay) -> winrt::fire_and_forget {

 co_await winrt::resume_after(delay);

 chain->complete();

 }(std::move(chain),

 std::chrono::milliseconds(static_cast<int64_t>

 (earliest ? *earliest - GetTickCount64() : 0)));

 }

 std::shared_ptr<chained_task> chain;

 std::optional<ULONGLONG> earliest;

 };

 ⟦ ... ⟧

};

Or we could reserve the sentinel value of 0 to mean “no delay”.

4/5

struct task_sequencer

{

 ⟦ ... ⟧

 struct completer

 {

 ~completer()

 {

 [](auto chain, auto delay) -> winrt::fire_and_forget {

 co_await winrt::resume_after(delay);

 chain->complete();

 }(std::move(chain),

 std::chrono::milliseconds(static_cast<int64_t>

 (earliest ? earliest - GetTickCount64() : 0)));

 }

 std::shared_ptr<chained_task> chain;

 ULONGLONG earliest = 0;

 };

public:

 template<typename Maker>

 auto QueueTaskAsync(Maker&& maker) ->decltype(maker())

 {

 auto node = std::make_shared<chained_task>();

 suspender suspend;

 using Async = decltype(maker());

 auto task = [&]() -> Async

 {

 completer completer{ current };

 auto local_maker = std::forward<Maker>(maker);

 auto context = winrt::apartment_context();

 co_await suspend;

 co_await context;

 completer.earliest = (GetTickCount64() + 1000) | 1;

 co_return co_await local_maker();

 }();

 {

 winrt::slim_lock_guard guard(m_mutex);

 m_latest.swap(node);

 }

 node->continue_with(suspend.handle);

 return task;

 }

 ⟦ ... ⟧

};

5/5

We force the bottom bit of earliest to 1 when recording the start time, so that the value
is never zero. This introduces a potential error of 1 millisecond, but one millisecond error
out of 1 second is not going to be noticeable in practice for this type of work.

Bonus chatter: You may have figured out that the point of this exercise, aside from
actually adding a feature to the task scheduler, is just showing the process of studying the
implementation of a chunk of code, getting an idea, following through the implementation,
and then refining the implementation.

