
1/2

April 2, 2025

Adding delays to our task sequencer, part 1
devblogs.microsoft.com/oldnewthing/20250402-00/?p=111040

Suppose you want to use the task_sequencer class we created a while back (and which
we fixed not too long ago), but you also want to implement a rudimentary form of
throttling, so that tasks run at a specified maximum rate.

Suppose for concreteness that you want to have a 1-second cooling off period before the
next task runs. How would we add this to our task_sequencer?

Well, the thing that kicks off the next task is the completer, which calls complete() on
the chained task to trigger the start of the next task. All we have to do is delay that
completion. For that, we can use fire_and_forget.

struct task_sequencer

{

 ⟦ ... ⟧

 struct completer

 {

 ~completer()

 {

 complete_later(std::move(chain));

 }

 std::shared_ptr<chained_task> chain;

 static fire_and_forget complete_later(

 std::shared_ptr<chained_task> chain)

 {

 co_await winrt::resume_after(1s);

 chain->complete();

 }

 };

 ⟦ ... ⟧

};

Instead of calling chain->complete() immediately from the destructor, we kick off a
coroutine that calls it after waiting one second.

https://devblogs.microsoft.com/oldnewthing/20250402-00/?p=111040
https://devblogs.microsoft.com/oldnewthing/20220915-00/?p=107182
https://devblogs.microsoft.com/oldnewthing/20250328-00/?p=111016

2/2

This coroutine is simple enough you might find it easier to inline it, so that all the logic is
in one place.

struct task_sequencer

{

 ⟦ ... ⟧

 struct completer

 {

 ~completer()

 {

 [](auto chain) -> winrt::fire_and_forget {

 co_await winrt::resume_after(1s);

 chain->complete();

 }(std::move(chain));

 }

 std::shared_ptr<chained_task> chain;

 };

 ⟦ ... ⟧

};

Maybe instead of waiting one second between the completion of one operation and the
start of the next, you want to wait one second between the start of one operation and the
start of the next. We’ll look at that next time.

