
1/4

Raymond Chen March 14, 2025

The case of COM failing to pump messages in a single-
threaded COM apartment

devblogs.microsoft.com/oldnewthing/20250314-00

A customer encountered a hang caused by COM not pumping messages while waiting for a
cross-thread operation to complete. They were using the task_sequencer class for
serializing asynchronous operations on a UI thread they created to handle accessibility
callbacks.

The hang stack looked like this:

https://devblogs.microsoft.com/oldnewthing/20250314-00/?p=110965
https://devblogs.microsoft.com/oldnewthing/20220915-00/?p=107182

2/4

ntdll!ZwWaitForMultipleObjects+0x4

KERNELBASE!WaitForMultipleObjectsEx+0xe0

combase!MTAThreadDispatchCrossApartmentCall+0x3a0

combase!CSyncClientCall::SendReceive2+0x65c

combase!DefaultSendReceive+0x88

combase!CSyncClientCall::SendReceive+0x390

combase!CClientChannel::SendReceive+0xc0

combase!NdrExtpProxySendReceive+0x68

rpcrt4!NdrpClientCall3+0x764

combase!ObjectStublessClient+0x180

combase!ObjectStubless+0x34

combase!CObjectContext::InternalContextCallback+0x3f0

combase!CObjectContext::ContextCallback+0x80

contoso!winrt::impl::resume_apartment_sync+0x58

contoso!winrt::impl::resume_apartment+0xe8

contoso!winrt::impl::apartment_awaiter::await_suspend+0x6c

contoso!⟦lambda...⟧::operator()<⟦...⟧>+0x1c8

contoso!task_sequencer::chained_task::continue_with+0x38

contoso!task_sequencer::QueueTaskAsync<⟦...⟧>+0xd0

contoso!⟦lambda...⟧::<lambda_invoker_cdecl>+0xa0

user32!__ClientCallWinEventProc+0x34

ntdll!KiUserCallbackDispatcherReturn

win32u!ZwUserGetMessage+0x4

user32!GetMessageW+0x28

contoso!⟦lambda...⟧::operator()+0x204

contoso!std::thread::_Invoke<⟦lambda...⟧>+0x24

ucrtbase!thread_start<unsigned int (__cdecl*)(void *),1>+0x48

kernel32!BaseThreadInitThunk+0x40

ntdll!RtlUserThreadStart+0x44

We see that we have a UI thread (notice the GetMessage at the bottom of the stack), yet
COM decided to block without pumping messages (WaitForMultipleObjectsEx instead of
(MsgWaitForMultipleObjectsEx).

Is this a bug in the task sequencer?

Let’s look at the stack more closely. A message arrived via __ClientCallWinEventProc, and
that then queued a task into the task sequencer. The continue_with saw that the task
sequencer had no active task, so it ran the new task immediately. That new task wants to run
on a different thread, so C++/WinRT’s apartment-switching code kicked in.

The apartment-switching code went to resume_apartment_sync, which in turn called our
friend IContextCallback::ContextCallback, and that called into the COM thread-switching
infrastructure, which doesn’t pump messages while wiating for the destination apartment to
respond.

Now, COM is a rather mature technology, and this code path is execised constantly
throughout the system, so it’s unlikely that it simply “forgot” to pump messages. The function
name MTAThreadDispatchCrossApartmentCall strongly suggests that COM thinks that the

https://devblogs.microsoft.com/oldnewthing/20191128-00/?p=103157

3/4

thread is in an MTA. And the use of resume_apartment_sync suggests that C++/WinRT also
thinks that the thread is in an MTA:

else if (is_sta_thread())

{

 resume_apartment_on_threadpool(

 context.m_context, handle, failure);

 return true;

}

else

{

 return resume_apartment_sync(

 context.m_context, handle, failure);

}

If this were an STA thread, then we would have called resume_apartment_on_threadpool
instead of resume_apartment_sync.

Let’s take a closer look at this thread:

// Create a thread to receive accessibility notifications.

m_thread = std::thread([this] {

 ::SetThreadDescription(::GetCurrentThread(), L"Accessibility STA");

 ⟦ ... ⟧

 wil::unique_hwineventhook hook(SetWinEventHook(⟦...⟧));

 THROW_LAST_ERROR_IF_NULL(hook);

 MSG msg;

 while (!m_stop && GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

});

Ah, so there’s your problem.

The thread claims to be an STA thread:

 ::SetThreadDescription(::GetCurrentThread(), L"Accessibility STA");

But there is nothing in the thread procedure that actually makes it an STA thread. It never
initialized COM in single-threaded mode.

The thread merely engaged in wishful thinking, proclaming itself to be an STA thread without
actually becoming one. (Or maybe it believed in nominative determinism: The mere act of
calling itself an STA thread was sufficient to make it true.)

https://github.com/microsoft/cppwinrt/blob/cf96df51cb808872c98301092b25e75de576c7d6/strings/base_coroutine_threadpool.h#L123,L131

4/4

Since COM is already initialized elsewhere in the process, the new thread gets put into the
implicit MTA by default, and it took no action to leave it, so from COM’s point of view, this
thread is an MTA thread. And MTA threads are allowed to block without pumping messages.

What they need to do is actually make it an STA thread, say, by calling CoInitializeEx with
the COINIT_APARTMENTTHREADED flag, and then uninitializing COM before the thread exits to
return the thread to its original state. You can kill two birds with one stone with the help of the
WIL RAII type.

// Create a thread to receive accessibility notifications.

m_thread = std::thread([this] {

 auto uninit = wil::CoInitializeEx(COINIT_APARTMENTTHREADED);

 ::SetThreadDescription(::GetCurrentThread(), L"Accessibility STA");

 ⟦ ... ⟧

 wil::unique_hwineventhook hook(SetWinEventHook(⟦...⟧));

 THROW_LAST_ERROR_IF_NULL(hook);

 MSG msg;

 while (!m_stop && GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

});

