
1/6

Rosyna Keller March 13, 2025

Making sure that a DLL loads only from your application
directory


devblogs.microsoft.com/oldnewthing/20250313-00

Raymond Chen
A customer distributed a program and included its supporting DLLs in the same
directory, because the application directory is the application bundle.

They worried about the case that the user deletes one of the supporting DLLs, and then
when the program tries to load that DLL, a rogue copy somewhere else on the PATH gets
loaded instead. They want to reject loading the DLL from anywhere other than the
application directory.

You can accomplish this by explicitly calling LoadLibraryEx with the LOAD_LIBRARY_SEARCH_
APPLICATION_DIR flag, which says that the function should look only in the application
directory for the DLL. If it’s not there, it gives up without searching any other directories. After
you load the library, you can use GetProcAddress to get the functions.

Unfortunately, this is rather cumbersome since you have to switch from implicit loading to
explicit loading, so you don’t get the convenience of import libraries.

You might think that you can get the convenience back by using the /DEPENDENTLOADFLAG
linker option with the value 0x200 (the numeric value of LOAD_LIBRARY_SEARCH_
APPLICATION_DIR), but the problem is that the dependent load flag applies to all DLLs loaded
via import tables, and that includes kernel32 and other DLLs you probably wanted to load
from the system32 directory.

Now, the system32 directory is writable only by administrators, so we could consider that a
“safe” directory, because if somebody attacks that directory, they have already taken over the
system. Therefore, you could use the /DEPENDENTLOADFLAG linker option with the value
0xA00, which is the numeric value of LOAD_LIBRARY_SEARCH_APPLICATION_DIR |
LOAD_
LIBRARY_SEARCH_SYSTEM32. Alternatively, you could use the value 0x1000, which is the

https://devblogs.microsoft.com/oldnewthing/20250313-00/?p=110963
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing
https://devblogs.microsoft.com/oldnewthing/20110620-00/?p=10393
https://devblogs.microsoft.com/oldnewthing/20230328-00/?p=107978


2/6

numeric value of LOAD_LIBRARY_SEARCH_DEFAULT_DIRS, which includes the application
directory, the system32 directory, and any directories added by AddDllDirectory and Set‐
DllDirectory.

But wait, what is the issue we are trying to defend against? The stated scenario is “The user
deletes a DLL from the application directory.” In that case, the user already has write
permission into the application directory, so instead of deleting the DLL, they can just replace
it with a malicious DLL. Restricting the load to the application directory does not prevent a
malicious DLL from being loaded.

But maybe your goal is not to create a security boundary but just to contain the scope of an
error. If the user accidentally deletes the DLL from the application directory, at least prevent
somebody else from injecting a DLL into the process by planting a DLL on the path.

Now, the directories on the path fall into two categories. You have the directories on the
global path, and the directories that are specific to a single user. If an attacker can plant a
DLL into a directory on the global path, then that means that they have gained write
permission onto the global path. To do this without administrator privileges requires that the
global path contain a directory writable by non-administrators, which is an insecure
configuration, so we are in the case of creating an insecure system and then being surprised
that it is insecure. Instead of planting a rogue DLL on the path, the attacker could just plant,
say, a rogue notepad.exe, and steal all your attempts to run notepad.

The other case is that the directory under attack is a directory on the per-user path. The user
chose to add that directory, and if they added a directory that is writable by non-
administrators other than the current user, they have once again created an insecure system
because they have granted non-administrators the ability to inject things into their path.

The only attacks against rogue DLLs on the path assume that the system has already been
compromised. So this issue is not about protecting a secure system but rather trying to
protect from an already-compromised system.

Author

Raymond Chen
Raymond has been involved in the evolution of Windows for more than 30
years. In 2003, he began a Web site known as The Old New Thing which has
grown in popularity far beyond his wildest imagination, a development which still
gives him the heebie-jeebies. The Web site spawned a book, coincidentally also
titled The Old New Thing (Addison Wesley 2007). He occasionally appears on the Windows
Dev Docs Twitter account to tell stories which convey no useful information.

12 comments

https://devblogs.microsoft.com/oldnewthing/20200420-00/?p=103685
https://devblogs.microsoft.com/oldnewthing/20100114-00/?p=15273
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


3/6

Discussion is closed.	Login to edit/delete existing comments.

Newest

RK
March 24, 2025
As Raymond mentioned, using LoadLibraryXX() requires you use GetProcAddress() to
hook up functions address pointers. This becomes tedious.

I am surprised Raymond didn’t mention the manifest solution if it can really affect only
the specific DLL and automatically connect the function pointers, as loading a DLL by
linking to it normally would.

SK
Stefan Kanthak	March 24, 2025
“As Raymond mentioned, using LoadLibraryXX() requires you use GetProc-
Address() to hook up functions address pointers. This becomes tedious.”

Nobody stops you to link using /DELAYLOAD:‹your.dll› and put the call of
LoadLibraryEx() into your own __delayLoadHelper2() routine!

https://devblogs.microsoft.com/oldnewthing/wp-login.php?redirect_to=https%3A%2F%2Fdevblogs.microsoft.com%2Foldnewthing%2F20250313-00%2F%3Fp%3D110963%23comments


4/6

RK
March 19, 2025
The way this is presented, this doesn’t sound like a security issue, it sounds more like a
developer wanting to avoid DLL Hell.

This would especially be a problem if they’re using a third-party DLL that is installed by
multiple apps and the user decides to move only the .exe to another location, not
realizing the DLL is a necessary component, thereby causing extremely weird (possibly
indeterminate) crashes if it happens to grab a DLL from another app’s install that
incorrectly installed it on a global search path.

While a security feature could fix this usability issue (loading only DLLs signed by...

Read more

SK
Stefan Kanthak	March 23, 2025
Security left aside it is possible with an XML snippet <file
loadFrom="%__APPDIR__%‹filename.dll›" name="‹unqualified filename from
import directory›"> placed in the applications manifest.

SK
Stefan Kanthak	March 23, 2025 · Edited
"Although I am surprised to learn DLLs can’t embed their own search path when
they’re linked to an executable without modifying the global search paths."

Please inform yourself about Activation Contexts and how these are derived from
Application Manifests or Assembly Manifests.


Additionally pay a look at the "LOAD_WITH_ALTERED_SEARCH_PATH" flag.

Read more

javascript:void(0)
javascript:void(0)


5/6

MM
Flux	March 17, 2025 · Edited
The customer request is less about security and more about preventing collateral
loading.

Imagine a user who installs App A, but during installation, chooses Custom Setup, and
opts not to install ffmpeg.dll (or component that includes ffmpeg.dll). FFmpeg,
however, is a popular free and open-source solution. Many different apps may ship with
custom copies of ffmpeg.dll. It is reasonable to assume that one such app, say App
B, comes with an incompatible copy of ffmpeg.dll that App A wouldn’t want to load.

Cole Tobin	March 18, 2025 · Edited
If ffmpeg.dll is required for functionality, the installer shouldn’t give the user the
option to not install it. This is Windows, not Linux. If you need a DLL, provide it
yourself. However, if the ffmpeg.dll requiring component is optional, the installer
should leave a note for the application to not allow that functionality. Your
scenario isn’t a Windows problem, but an installer/application bug.

TM
Tom Mason	March 15, 2025
I've had a somewhat legitimate reason for this before. We were shipping a copy of a
newer version of onnxruntime.dll than was included in windows at the time. We got
some crash reports that didn't make sense, so we added some code to log the md5
sum of the onnxruntime.dll that we had loaded. Sure enough, the md5 didn't match. We
never did figure out why it was loading the wrong one (only for a tiny minority of users, I
might add), but explicitly loading it using LoadLibraryW and the full path fixed the issue.
Luckily onnxruntime already uses the...

Read more

javascript:void(0)


6/6

Shawn Van Ness	March 14, 2025
My guess: this is less about security, more about reliability and supportability -- I've
seen this flavor of DLL-hell with libraries like DbgHelp.dll, which have changed a lot
over the past 20 years, in binary-incompatible ways, but are used and redist'ed fairly
ubiquitously -- including by other DLLs you may end up loading, directly or indirectly
(thinking of things like FPS counters and VR/XR frameworks).

It's tough when your app crashes due to an incompatible DLL conflict, and even
tougher when it's your crash-handler that's crashing because it can't use DbgHelp.dll to
log a stack trace, so your customer has...

Read more

JH
Joshua Hudson	March 14, 2025
That doesn’t work _at all_.

I filed a vulnerability report after discovering that User32.dll loads additional DLLs
dynamically and throws out the value of /DEPENDENTLOADFLAG that the
application was linked with. The vulnerability got rejected. So we live in the world
where you can’t restrict the DLL load order for security.

SK
Stefan Kanthak	March 23, 2025
Ask your administrator to configure SAFER, AppLocker or WDAC for “write
XOR execute” in the (NTFS) filesystem.

Mike Morrison	March 14, 2025
The application bundle is responsible only for the bundle. The app isn’t responsible for
insecure system configurations outside the bundle that were not made by the app or
installer itself. I don’t see why apps shouldn’t harden their DLL loading (and the
directory permissions) due to the possibility of insecure configs outside of the bundle.

Stay informed

Get notified when new posts are published.

javascript:void(0)

