C++/WiInRT implementation inheritance: Notes on
winrt::implements, part 7

=. devblogs.microsoft.com/oldnewthing/20250227-00

February 27, 2025

Last time, we simplified a base class so that it doesn’t fully implement any interfaces at all.
So why are we using winrt::implements in the first place?

Yeah, why?

Let’s not.

1/3

https://devblogs.microsoft.com/oldnewthing/20250227-00/?p=110913
https://devblogs.microsoft.com/oldnewthing/20250226-00/?p=110908

// A simple copy drop target provides no custom feedback
// and accepts anything by copy.
struct SimpleCopyDropTarget

{
winrt::IAsyncOperation<winrt::DataPackageOperation>
EnterAsync(winrt::CoreDragInfo const& info,
winrt::CoreDragUIOverride const&)
{
co_return GetOperation(info);
}
winrt::IAsyncOperation<winrt::DataPackageOperation>
OverAsync(winrt::CoreDragInfo const& info,
winrt::CoreDragUIOverride const&)
{
co_return GetOperation(info);
}
winrt: :IAsyncAction
LeaveAsync(winrt::CoreDragInfo const&)
{
co_return;
}
// DropAsync must be implemented by derived class
protected:
winrt::DataPackageOperation GetOperation(
winrt::CoreDragInfo const& info)
{
return info.AllowedOperations() &
winrt: :DataPackageOperation: :Copy;
}
}

This base class implements some of the methods of 1CorebropOperation, but it doesn’t
implement DropAsync, so it can’t be used to implement the interface. So we don’t even
pretend to! We don’t derive from winrt::implements at all. Instead, the derived class just
uses this base class to implement some of the interface methods that it declares.

2/3

struct Derived : winrt::implements<
Derived,
winrt::ICoreDropOperationTarget>,
SimpleCopyDropTarget,

{
winrt: :IAsyncOperation<DataPackageOperation>
DropAsync(winrt::CoreDragInfo info)
{
auto lifetime = get_strong();
auto operation = GetOperation(info);
if (!(operation & winrt::DataPackageOperation::Copy)) {
co_return winrt::DataPackageOperation: :None;
}
[process the drop 1]
co_return winrt::DataPackageOperation: :Copy;
}
}

In more general cases, the helper class may need to offer extensibility points to the derived
class, and we can use the existing mechanisms (virtual methods, CRTP, deducing this) to
ask the derived class for help.

Next time, we’ll compare the pros and cons of the various options.

3/3

