C++/WiInRT implementation inheritance: Notes on
winrt::implements, part 6

B® devblogs.microsoft.com/oldnewthing/20250226-00
February 26, 2025

Last time, we were looking_for a way to allow awinrt: :implements-based base class to
defer implementation of a method to its derived class. The problem is that if you use winrt::
implements to implement an interface, you have to implement all the methods. But you might
also want to leave some of the methods for the derived class to implement in a manner of its
choosing (for example, choosing whether the parameters are references or values, or
allowing the parameters to be templated), which means that the virtual method approach
doesn’t work. Something has to give.

There are multiple solutions, depending on which requirement you want to weaken.

You can weaken the “leave some of the methods for the derived class to implement”
requirement by implementing it yourself but forwarding the call to the derived class via CRTP.

1/7

https://devblogs.microsoft.com/oldnewthing/20250226-00/?p=110908
https://devblogs.microsoft.com/oldnewthing/20250225-00/?p=110905

// A simple copy drop target provides no custom feedback

// and accepts anything by copy.

template<typename D>

struct SimpleCopyDropTarget
winrt::implements<SimpleCopyDropTarget<D>,
winrt::ICoreDropOperationTarget>

{
winrt::IAsyncOperation<winrt::DataPackageOperation>
EnterAsync(winrt::CoreDragInfo const& info,
winrt::CoreDragUIOverride const&)
{
co_return GetOperation(info);
}
winrt: :IAsyncOperation<winrt::DataPackageOperation>
OverAsync(winrt::CoreDragInfo const& info,
winrt::CoreDragUIOverride const&)
{
co_return GetOperation(info);
}
winrt::IAsyncAction
LeaveAsync(winrt::CoreDragInfo const&)
{
co_return;
}
winrt: :IAsyncOperation<winrt::DataPackageOperation>
DropAsync(winrt::CoreDragInfo const& info)
{
return static_cast<D*>(this)->
DropAsyncImpl(info);
}
protected:
winrt::DataPackageOperation GetOperation(
winrt::CoreDragInfo const& info)
{
return info.AllowedOperations() &
winrt: :DataPackageOperation: :Copy;
}
}

struct Derived : winrt::implements<
Derived,
SimpleCopyDropTarget<Derived>>

winrt: :IAsyncOperation<winrt::DataPackageOperation>
DropAsyncImpl(winrt::CoreDragInfo info)

auto lifetime = get_strong();

2/7

auto operation = GetOperation(info);
if (!(operation & winrt::DataPackageOperation::Copy)) {
co_return winrt::DataPackageOperation: :None;

}

[process the drop I

co_return winrt::DataPackageOperation: :Copy;
+i

We implement DropAsync in the base class but immediately forward the call out to the
derived class’s DropAsyncImpl method. This is done via CRTP so that the derived class has
full flexibility in deciding how to accept the parameters.

If you have access to “deducing this”, then you can let the “this” deduction do the work
instead of CRTP.

3/7

// A simple copy drop target provides no custom feedback

// and accepts anything by copy.

struct SimpleCopyDropTarget
winrt::implements<SimpleCopyDropTarget,
winrt::ICoreDropOperationTarget>

{
winrt: :IAsyncOperation<winrt::DataPackageOperation>
EnterAsync(winrt::CoreDragInfo const& info,
winrt::CoreDragUIOverride const&)
{
co_return GetOperation(info);
}
winrt: :IAsyncOperation<winrt::DataPackageOperation>
OverAsync(winrt::CoreDragInfo const& info,
winrt::CoreDragUIOverride const&)
{
co_return GetOperation(info);
}
winrt::IAsyncAction
LeaveAsync(winrt::CoreDragInfo const&)
{
co_return;
}
winrt: :IAsyncOperation<winrt::DataPackageOperation>
DropAsync(this auto&& self,
winrt::CoreDragInfo const& info)
{
return self.DropAsyncImpl(info);
}
protected:
winrt::DataPackageOperation GetOperation(
winrt::CoreDragInfo const& info)
{
return info.AllowedOperations() &
winrt::DataPackageOperation: :Copy;
}
}

struct Derived : winrt::implements<
Derived,
SimpleCopyDropTarget>

winrt::IAsyncOperation<winrt::DataPackageOperation>
DropAsyncImpl(winrt::CoreDragInfo info)

auto lifetime = get_strong();

auto operation = GetOperation(info);

47

if (!(operation & winrt::DataPackageOperation::Copy)) {
co_return winrt::DataPackageOperation: :None;

[process the drop 1]
co_return winrt::DataPackageOperation: :Copy;
}

Another option is to weaken the “implement an interface” part of “use winrt::implements to
implement an interface”. We can simply omit ICoreDropOperationTarget from the list of
interfaces implemented by the base class, since our base class doesn’t contain a full
implementation. Instead, let the derived class finish the implementation and declare the
interface there.

5/7

// A simple copy drop target provides no custom feedback

// and accepts anything by copy.

struct SimpleCopyDropTarget
winrt::implements<SimpleCopyDropTarget,
winrt::IInspectable> // no ICoreDropOperationTarget

{
winrt: :IAsyncOperation<winrt::DataPackageOperation>
EnterAsync(winrt::CoreDragInfo const& info,
winrt::CoreDragUIOverride const&)
{
co_return GetOperation(info);
}
winrt: :IAsyncOperation<winrt::DataPackageOperation>
OverAsync(winrt::CoreDragInfo const& info,
winrt::CoreDragUIOverride const&)
{
co_return GetOperation(info);
}
winrt::IAsyncAction
LeaveAsync(winrt::CoreDragInfo const&)
{
co_return;
}
// DropAsync must be implemented by derived class
protected:
winrt::DataPackageOperation GetOperation(
winrt::CoreDragInfo const& info)
{
return info.AllowedOperations() &
winrt::DataPackageOperation: :Copy;
}
+

struct Derived : winrt::implements<
Derived,
SimpleCopyDropTarget,
winrt::ICoreDropOperationTarget>

winrt::IAsyncOperation<winrt::DataPackageOperation>
DropAsync(winrt::CoreDragInfo info)

auto lifetime = get_strong();
auto operation = GetOperation(info);

if (!(operation & winrt::DataPackageOperation::Copy)) {
co_return winrt::DataPackageOperation: :None;

6/7

[process the drop 1
co_return winrt::DataPackageOperation: :Copy;
}

Our simpleCopybDropTarget no longer implements ICorebropOperationTarget. Instead, it is
Derived which implements ICoreDropOperationTarget. The SimpleCopyDropTarget
happens to provide some really handy implementations of 1CorebropOperationTarget
methods, but they aren’t actually hooked up to the I1CorebropOperationTarget interface
until the berived class says, “And | implement ICoreDropOperationTarget.”

The upside of this is that you don’t have to use CRTP or forwarders. The downside of this is
that the Derived class has to remember to say “And | implement ICorebDropOperation-
Target,” because if nobody says it, then the interface isn’t implemented by anybody!

But wait, the simpleCopybropTarget doesn’t implement anything interesting any more. Why
are we even bothering?

Next time, we’ll solve the problem a third way: Don’t even bother.

7/7

