
1/3

February 24, 2025

C++/WinRT implementation inheritance: Notes on
winrt::implements, part 4

devblogs.microsoft.com/oldnewthing/20250224-00

Last time, we figured out the rules for inheriting winrt::implements in C++/WinRT runtime
class implementations: You can use winrt::implements in your class hierarchy, as long as
you use single inheritance for the winrt::implements part. You are not allowed to derive
multiply from two different winrt::implements base classes.

One case of this is a base class that is configured at construction.

struct StringableInt32 :

 winrt::implements<StringableInt32,

 winrt::Windows::Foundation::IStringable>

{

 StringableInt32(int value) : m_value(value) {}

 winrt::hstring ToString()

 { return winrt::to_hstring(m_value); }

private:

 int m_value;

};

We can use this by itself:

auto o = winrt::make<StringableInt32>(42);

But we can also tell the implements template that we would like to derive from it.

struct Derived :

 winrt::implements<Derived, StringableInt32>

{

 Derived() : StringableInt32(42) {}

};

https://devblogs.microsoft.com/oldnewthing/20250224-00/?p=110901
https://devblogs.microsoft.com/oldnewthing/20250221-00/?p=110895

2/3

Unfortunately, this doesn’t work because StringableInt32 is an indirect base class, and you
can initialize only direct base classes in the constructor. So how do you initialize the
StringableInt32?

The answer can be found by looking at the definition of winrt::implements.

template <typename D, typename... I>

struct implements :

 impl::producers<D, I...>,

 impl::base_implements<D, I...>::type

{

protected:

 using base_type = typename

 impl::base_implements<D, I...>::type;

 using root_implements_type = typename

 base_type::root_implements_type;

 using is_factory = typename

 root_implements_type::is_factory;

 using base_type::base_type;

We saw last time that base_implements looks for the template parameter that is itself derived
from implements, and makes its type member type be that template parameter. We define
base_type to be that type, which in our case is StringableInt32.

The using base_type::base_type imports the constructors of base_type as constructors of
implements. And for us, this means that we can use the StringableInt32(int value)
constructor as if it were a constructor of implements.

struct Derived :

 winrt::implements<Derived, StringableInt32>

{

 Derived() : implements(42) {}

};

The base class can expose other methods to the derived class in the usual way.

https://devblogs.microsoft.com/oldnewthing/20250221-00/?p=110895

3/3

struct StringableInt32 :

 winrt::implements<StringableInt32,

 winrt::Windows::Foundation::IStringable>

{

 StringableInt32(int value) : m_value(value) {}

 winrt::hstring ToString()

 { return winrt::to_hstring(m_value); }

 void set_value(int value) { m_value = value; }

private:

 int m_value;

};

struct Derived :

 winrt::implements<Derived, StringableInt32>

{

 Derived() : implements(42) {}

 void Reset() { set_value(0); }

};

Okay, so this works for base classes that can fully implement an interface. But what if the
base class wants to delegate part of its implementation to the derived class? We’ll look at
that next time.

