
1/3

February 21, 2025

C++/WinRT implementation inheritance: Notes on
winrt::implements, part 3

devblogs.microsoft.com/oldnewthing/20250221-00

In C++/WinRT, the implements template type starts like this:

template <typename D, typename... I>

struct implements :

 impl::producers<D, I...>,

 impl::base_implements<D, I...>::type

{

The producers template type generates the vtables for the COM interfaces. But that’s not
what we’re looking at today. Today we’re going to look at the base_implements part.

The base_implements type is defined as follows:

template <typename D, typename Dummy = std::void_t<>, typename... I>

struct base_implements_impl

 : impl::identity<root_implements<D, I...>> {};

template <typename D, typename... I>

struct base_implements_impl<D, std::void_t<typename nested_implements<I...>::type>,
I...>

 : nested_implements<I...> {};

template <typename D, typename... I>

using base_implements = base_implements_impl<D, void, I...>;

We learned from last time that this uses SFINAE: to implement an “if then else” pattern. In
this case, it’s saying “If nested_implements<I...>::type exists, then derive from nested_
implements<I...>. Otherwise, derive from impl::identity<root_implements<D, I...>>.”

template <typename T>

struct identity

{

 using type = T;

};

https://devblogs.microsoft.com/oldnewthing/20250221-00/?p=110895
https://en.cppreference.com/w/cpp/language/sfinae

2/3

Okay, so identity<T>::type is just T. This is basically a copy of std::type_identity.
C++/WinRT supports C++17, but std::type_identity didn’t show up until C++20, so
C++/WinRT provides its own copy.

Applying this to base_implements_impl simplifies it to “If nested_implements<I...>::type
exists, then derive from nested_implements<I...>. Otherwise, derive from root_
implements<D, I...>.”

So what is nested_implements?

template <typename...>

struct nested_implements

{};

template <typename First, typename... Rest>

struct nested_implements<First, Rest...>

 : std::conditional_t<is_implements_v<First>,

 impl::identity<First>, nested_implements<Rest...>>

{

 static_assert(

 !is_implements_v<First> ||

 !std::disjunction_v<is_implements<Rest>...>,

 "Duplicate nested implements found");

};

This is a recursively-defined nested_implements. In the base case, nested_implements<> is
an empty class. Otherwise, we peel off the first template parameter and see if it derives from
implements. If so, then we use it. Otherwise, we recurse on the remaining parameters.

So nested_implements searches through the template parameters and takes the first one
that derives from implements. Otherwise, it’s an empty class.

But wait, there’s extra work done in the static_assert. First, let’s translate it from C++
template-ese to pseudo-code. The std::disjunction takes the logical OR of its arguments,
so the second part expands to !(is_implements_v<Rest1> ||
is_implements_v<Rest2> || ...), which says “None of the Rest is an implements.”

Now combine this with the first part, and we get “Either First is not an implements, or none
of the Rest is an implements.” If you transform this to an implication relation, you get “If
First is an implements, then none of the Rest is an implements.”

During the recursion, First progresses through all of the interface arguments, so the
assertion verifies that at most one of the interface arguments supports implements.

Okay, so unwinding back to base_implements, we had previously determined that the
definition was “If nested_implements<I...>::type exists, then derive from nested_
implements<I...>. Otherwise, derive from impl::identity<root_implements<D, I...>>.”

https://devblogs.microsoft.com/oldnewthing/20240607-00/?p=109865

3/3

Combining this with our discovery that nested_implements takes the first interface that is an
implements, we see that the result is that base_implements is

If none of the interfaces is an implements, then use root_implements.
If exactly one of the interfaces is an implements, then use it. (It will provide the root_
implements so we don’t have to.)
If more than one of the interfaces is an implements, then raise a compile-time error.

From all this, you can figure out the legal inheritance structures for winrt::implements: The
implements must form a single chain of inheritance, possibly passing through other non-
implements classes along the way. You cannot inherit (directly or indirectly) from multiple
implements. The innermost implements provides the root_implements.

 A A : implements<A, I1, B,

I2>, X1

 ↓

 implements X1

 ↓

produce<A,

I1>

 B produce<A,

I2>

 B : implements<B, C, I3>

 ↓

 implements

 ↓

 C produce<B,

I3>

 C : D, X2

 ↓

 D X2 D : implements<D, I4, I5>

 ↓

root_

implements

 produce<D,

I4>

 produce<D,

I5>

Next time, we’ll look at how you can employ base classes and inheritance in your Windows
Runtime implementation classes while still adhering to these restrictions.

