C++/WiInRT implementation inheritance: Notes on
winrt::implements, part 2

B® devblogs.microsoft.com/oldnewthing/20250220-00

February 20, 2025

Some time ago, we investigated how C++/WinRT decides which interfaces your class
implements when you use the implements template.

| promised to talk about unwrap_implements_t at some point in the future, so | guess now’s
the time.

template <typename T, typename = std::void_t<>>
struct unwrap_implements

{
using type = T;
}

template <typename T>
struct unwrap_implements<T,
std::void_t<typename T::implements_type>>

{
using type = typename T::implements_type;

}

template <typename T>
using unwrap_implements_t =
typename unwrap_implements<T>::type;

The std::void_t template is a helper for SEINAE: it expands to void if all if its template
arguments can be evaluated. The first usage of it is in the definition of the basic case:

template <typename T, typename = std::void_t<>>
struct unwrap_implements

{
using type = T;

iy

1/2

https://devblogs.microsoft.com/oldnewthing/20250220-00/?p=110893
https://devblogs.microsoft.com/oldnewthing/20220325-00/?p=106384
https://en.cppreference.com/w/cpp/language/sfinae

Here, we use std: :void_t<>. Since all of the template arguments can be evaluated (all zero
of them), this is the same as just void. I'm not sure why the code uses the longer formulation
instead of just writing void; maybe it’s just to parallel the usage of std: :void_t argumentin

the partial specialization.

The partial specialization uses std: :void_t<typename T::implements_type>, soitis
testing whether the type T has a member type named implements_type. If so, then this
partial specialization succeeds, and the type is whatever implements_type was. The
implements template creates an implements_type member type, so this succeeds when T
derives from implements (possibly through a chain of intermediate classes).

Therefore, the result of unwrap_implements<T>::type is the implements if T derives
(eventually) from implements; otherwise, it’s just T itself.

The last part is just making unwrap_implements_t<T> a shorthand for unwrap
implements<T>::type.

| talked through this whole thing step by step, but after some practice, you recognize this
pattern fairly quickly, and you read it as “if (SFINAE condition) then (partial specialization
thing) else (fallback thing).”

Next time, we’ll build on this to understand the allowable inheritance structures for winrt::
implements.

2/2

https://devblogs.microsoft.com/oldnewthing/20240812-00/?p=110121

