
1/5

February 12, 2025

Async-Async revisited: What about cancellation?
devblogs.microsoft.com/oldnewthing/20250212-00

We learned some time ago about Async-Async, a feature that reduces the chattiness of
cross-thread asynchronous operations. One thing we didn’t cover in the diagram is
cancellation. How does cancellation work in Async-Async?

Recall that Async-Async works by creating two helper objects, one on the client side that
pretends to be the server, and one on the server side that pretends to be the client. When
the client initiates an asynchronous operation on the server, it receives an IAsyncOperation
object immediately: This object is the client side helper. That client side helper
asynchronously contacts the server-side helper object, which itself initiates the actual
asynchronous operation. This call is held pending until the actual asynchronous operation
completes, at which point the cross-thread call is completed with the operation results.

What happens when the operation is cancelled depends on when you cancel it.

One possibility is that you manage to cancel the operation even before the client side helper
can submit the call to the server.

Client   Client Layer  
Server
Layer   Server

DoSomethingAsync() → create fake
IAsyncOperation

 

  ⇠ return fake
IAsyncOperation

       

put_Completed(callback) → save in fake
IAsyncOperation

       

  ⇠ return        

Cancel() →          

https://devblogs.microsoft.com/oldnewthing/20250212-00/?p=110857
https://devblogs.microsoft.com/oldnewthing/20190430-00/?p=102460


2/5

  ← callback.Invoke()        

get_Status() →          

  ⇠ return Cancelled        

GetResults() →          

  ⇠ fail with ERROR_CANCELLED        

callback returns ⇢          

  ⇠ Cancel() returns        

Release() →          

  ⇠ destroy fake IAsync‐
Operation

       

In the case that the operation is cancelled by the client before any call goes out to the server,
the client-side fake IAsyncOperation just acts like a regular cancelled operation: It calls the
callback to report that the operation was cancelled, and if anybody asks about the status or
results of the operation, it says “It’s cancelled.”

Another case is that the client layer has already initiated the operation on the server side. In
that case, the client layer cancels the pending request, but it doesn’t wait for an answer from
the server. It just reports the cancellation to the client right away and lets the server cancel
the underlying operation in due course.

Client   Client Layer   Server Layer  

DoSomethingAsync() → create fake
IAsyncOperation

 

  ⇠ return fake
IAsyncOperation

→ fake client →

put_Completed(callback) → save in fake
IAsyncOperation

    ⇠

  ⇠ return   put_Completed(private) →

        Release() →

          ⇠

… time passes …



3/5

Cancel() → cancel pending call →    

  ← callback.Invoke()   cancellation received  

get_Status() →     Cancel() →

  ⇠ return Cancelled     ←

GetResults() →     Release() →

  ⇠ fail with
ERROR_CANCELLED

    ⇠

callback returns ⇢   ⇠ cancellation completes  

  ⇠ Cancel() returns      

Release() →        

  ⇠ destroy fake
IAsyncOperation

     

In the case of a cancellation that takes place after the operation has already been submitted
to the server, the client cancels the pending call, which the server layer interprets as a
request to cancel the server-side operation.

Yet another case is that the server-side operation has completed before the client issues the
cancellation. In that case, when the client layer cancels the pending request, it is told “What
are you talking about? It’s alredy done!” The client then apologizes and carries on.

Client   Client Layer   Server Layer  

DoSomethingAsync() → create fake
IAsyncOperation

 

  ⇠ return fake
IAsyncOperation

→ fake client →

put_Completed(callback) → save in fake
IAsyncOperation

    ⇠

  ⇠ return   put_Completed(private) →

        Release() →

          ⇠

… time passes …



4/5

Operation completes

          ←

        get_Status() →

          ⇠

Cancel() → cancel pending call → cancellation received  

  ← callback.Invoke() ← Cancel() →

get_Status() →       ⇠

  ⇠ return Cancelled ⇠ cancellation completes  

GetResults() →     GetResults() →

  ⇠ fail with
ERROR_CANCELLED

    ⇠

callback returns ⇢     try to return status and results

  ⇠ Cancel() returns   (nop – already cancelled)

Release() →     private returns ⇢

  ⇠ destroy fake
IAsyncOperation

     

This behavior does not require any changes to the client or server. The fake operations
introduced at the client and server behave just like a normal client and server. But if you are
paying close attention, you may be able to observe some differences.

One potentially observable behavior change is that when the client cancels the operation
quickly, the server-side operation might never have started. If you’re correlating logs on the
client and server side, you might see more client operations than server operations.

Another potentially observable behavior change is that the server may appear to receive
cancellations “late” because the client’s Cancel call returns immediately without waiting for
the server-side cancellation to finish.

Yet another potentially observable behavior change is that if the server receives the
cancellation after it has completed the operation, the server’s logs will say that the operation
ran successfully to completion, but the client’s logs will say that it cancelled the operation
and received a Canceled status.



5/5

Similarly, if the server receives the cancellation request and decides to complete the
operation with Completed rather than cancelling, the client will still see Canceled.

Async-Async virtualizes out both sides of an asynchronous operation, improving overall
throughput and reducing chattiness within the contract of the behavior of asynchronous
operations, but it can introduce observable effects if you rely on behavior outside the strict
bounds of the contract.


