
1/3

February 3, 2025

On trying to log an exception as it leaves your scope
devblogs.microsoft.com/oldnewthing/20250203-00

A customer wanted to log exceptions that emerged from a function, so they used the WIL
scope_exit object to specify a block of code to run during exception unwinding.

void DoSomething()

{

 auto logException = wil::scope_exit([&] {

 Log("DoSomething failed",

 wil::ResultFromCaughtException());

 });

 ⟦ do stuff that might throw exceptions ⟧

 // made it to the end - cancel the logging

 logException.release();

}

They found, however, that instead of logging the exception, the code in the scope_exit was
crashing.

They debugged into the ResultFromCaughtException function, which eventually reaches
something like this:

https://devblogs.microsoft.com/oldnewthing/20250203-00/?p=110830
https://github.com/microsoft/wil/blob/bfad71bd51f839ab6d0ce7161785699a6615afc7/include/wil/result_macros.h#L3958,L3980

2/3

try

{

 throw;

}

catch (⟦ blah blah ⟧)

{

 ⟦ blah blah ⟧

}

catch (⟦ blah blah ⟧)

{

 ⟦ blah blah ⟧

}

catch (...)

{

 ⟦ blah blah ⟧

}

The idea is that the code rethrows the exception, then tries to catch it in various ways, and
when it is successful, it uses the caught object to calculate a result code.

And that’s where the problem lies.

It’s sort of implied by the name ResultFromCaughtException that it tries to calculate a result
from an exception that was caught. But the scope_exit functor is called during unwinding
that results from an uncaught exception.

There is no caught exception to get a result from!

The C++ language says that a rethrowing throw rethrows the exception that is being
handled, where “being handled” roughly means “is executing the body of its catch clause”. If
you try a rethrowing throw when there is no exception being handled, then it’s straight to jail.
(Formally, std::terminate.)

The solution, then, is to put the ResultFromCaughtException somewhere inside a catch
block, like perhaps this:

void DoSomething()

{

 try {

 ⟦ do stuff that might throw exceptions ⟧

 } catch (...) {

 Log("DoSomething failed",

 wil::ResultFromCaughtException());

 throw;

 })

}

After logging the exception, we rethrow it so that the search for a handler can continue.

3/3

Bonus chatter: You can avoid a layer of indentation by using function-try.

void DoSomething() try

{

 ⟦ do stuff that might throw exceptions ⟧

} catch (...) {

 Log("DoSomething failed",

 wil::ResultFromCaughtException());

 throw;

}

https://devblogs.microsoft.com/oldnewthing/20230223-00/?p=107867

