A brief and incomplete comparison of memory corruption
detection tools

=. devblogs.microsoft.com/oldnewthing/20250124-00

January 24, 2025

| promised last time to do a comparison of memory diagnostic tools. We have runtime
diagnostic tools Address Sanitizer (ASAN), Valgrind, and Application Verifier (AppVerifier,
avrf), and we have recording tools rr, and Time Travel Debugging (TTD)

First, the runtime tools:

ASAN | Valgrind | AppVerifier

Requires recompile Yes No No
Supported languages C,C++ | All All

Detects uninitialized read No Yes No
Detects heap UAF Yes Yes Yes
Detects stack UAF Yes Yes No
Detects out-of-bound array access | Yes No No
Detects misuse of system APls No No Yes

ASAN detects a lot more types of memory errors, but it requires that you recompile
everything. This can be limiting if you suspect that the problem is coming from a component
you cannot recompile (say because you aren’t set up to recompile it, or because you don’t
have the source code). Valgrind and AppVerifier have the advantage that you can turn them
on for a process without requiring a recompilation. That means that you can ask a customer
to turn it on at their site, without having to deliver a custom build to them. This is even more
important on Windows because you have no chance of giving them an ASAN-enabled
version of, say, kernel32.d11.

1/3

https://devblogs.microsoft.com/oldnewthing/20250124-00/?p=110805
https://clang.llvm.org/docs/AddressSanitizer.html
https://valgrind.org/
https://learn.microsoft.com/windows-hardware/drivers/devtest/application-verifier
https://rr-project.org/
https://learn.microsoft.com/windows-hardware/drivers/debuggercmds/time-travel-debugging-overview

AppVerifier understands the semantics of many system APIs. For example, it will detect that
you re-entered a non-reentrant lock, or you released a lock from the wrong thread.

ASAN works by inserting read and write barriers to memory accesses in order to catch
semantically invalid accesses as they occur. Valgrind works by running the entire program
under a CPU emulator so it can track memory accesses. AppVerifier works by adding
additional tracing to memory allocations and checking whether unallocated bytes were
modified. In lightweight mode, AppVerifier detects the corruption only after the fact, so you're
not sure who did the corrupting. In Page heap mode, free memory is decommitted, and an
attempt to access freed memory will trigger an access violation, stopping at the invalid
access.

Bonus reading: Using App\Verifier to diagnose a crashing_bug.

Next, the recording tools:

rr TTD

Requires recompile No | No

Multithreading support Yes | Yes

Multicore support No | Yes

Supports shared memory | No | Yes

Supports async I/0O No | Yes

The rr tool records and replays the operations of every system call and assumes that the
CPU behaves deterministically otherwise. Any memory reads are assumed to produce the
same value that was last written by the program. This assumption reduces the size of the
trace files and allows the program to run at nearly full speed.

Time Travel Tracing runs the program under a CPU emulator and records the actual results
of every memory access, which might be different from the value last written if the memory
was modified by something outside the program itself, such as the kernel, or another process
modifying shared memory, or even another process doing a WriteProcessMemory into the
process being traced. This allows it to observe that memory has changed due to
asynchronous I/O (though it doesn’t know when the change occurred), such as one we
investigated some time ago, although that investigation didn’t use Time Travel Tracing.

Combining a runtime tool with a recording tool gives a powerful one-two punch. You can use
the runtime tool to detect the problem more reliably and more quickly, and you can use the
recording tool to go back in time to watch the evolution of the memory block through the

2/3

https://devblogs.microsoft.com/oldnewthing/20240412-00/?p=109636
https://devblogs.microsoft.com/oldnewthing/20250123-00/?p=110800
https://devblogs.microsoft.com/oldnewthing/20240927-00/?p=110320

lifetime of the program. For example, the runtime tool might tell you, “Erroneous double-free
of memory block,” and you can use the recording tool to go back in time to the first time the
memory block was freed to try to figure out why it was freed prematurely.

3/3

