
1/7

January 17, 2025

The case of the crash when trying to erase an element
from a std::set

devblogs.microsoft.com/oldnewthing/20250117-00

Today, we’ll look at a crash that occurred when trying to erase an element from a std::set.

rax=000001f565bc046e rbx=000001f589b20340 rcx=000001f565bc046e

rdx=000000e6658feca8 rsi=000001f589b20690 rdi=000001f589b203c0

rip=00007ffdd4726bc4 rsp=000000e6658fec30 rbp=0000388a1713ab55

r8=000001f589b895d0 r9=000001f589b895d0 r10=000001f589000140

r11=0000000000000000 r12=0000000000000001 r13=000000007ffe0385

r14=0000000000000000 r15=000001f589b8f900

LitWare!std::_Tree<std::_Tset_traits<WidgetWatcher *,

 std::less<WidgetWatcher *>,

 std::allocator<WidgetWatcher *>,0> >::_Eqrange+0x14

 [inlined in LitWare!std::_Tree<std::_Tset_traits<

 WidgetWatcher *,std::less<WidgetWatcher *>,

 std::allocator<WidgetWatcher *>,0> >::erase+0x18]:

00007ffd`d4726bc4 cmp byte ptr [rax+19h],r11b ds:000001f5`65bc0487=??

The stack trace has some information about how we got here.

https://devblogs.microsoft.com/oldnewthing/20250117-00/?p=110777

2/7

LitWare!std::_Tree<std::_Tset_traits<Widget *,

 std::less<Widget *>,

 std::allocator<Widget *>,0> >::_Eqrange+0x14

LitWare!std::_Tree<std::_Tset_traits<Widget *,

 std::less<Widget *>,

 std::allocator<Widget *>,0> >::erase+0x18

LitWare!Widget::~Widget+0xc8

LitWare!Widget::`scalar deleting destructor'+0x14

LitWare!DestroyWidget+0x15

Fabrikam!Doodad::~Doodad+0x75

Fabrikam!Doodad::`scalar deleting destructor'+0x14

Fabrikam!Doodad::Release+0x40

Contoso!Gadget::~Gadget+0x66

ucrtbase!<lambda_⟦...⟧>::operator()+0xa5

ucrtbase!__crt_seh_guarded_call<int>::operator()<⟦...⟧>+0x3b

ucrtbase!__acrt_lock_and_call+0x1c

ucrtbase!_execute_onexit_table+0x3d

Contoso!dllmain_crt_process_detach+0x45

Contoso!dllmain_dispatch+0xe6

ntdll!LdrpCallInitRoutine+0xb0

ntdll!LdrShutdownProcess+0x260

ntdll!RtlExitUserProcess+0x114

kernel32!FatalExit+0xb

ucrtbased!exit_or_terminate_process+0x3a

ucrtbased!common_exit+0x85

ucrtbased!exit+0x16

The top of the stack tells us that we are trying to erase an element from a std::set. This
happened in the Widget destructor:

struct Widget

{

 ⟦ ... ⟧

 // For debugging purposes, keep track of all of the Widgets.

 static wil::srwlock s_lock;

 static std::set<Widget*> s_allWidgets;

};

Widget::~Widget()

{

 auto guard = s_lock.lock_exclusive();

 s_allWidgets.erase(this);

}

The idea is that whenever we create a Widget, we store its address in the s_allWidgets set,
and when we destroy one, we remove it from the set. The comment notes that this is just for
debugging purposes, so that when we want to see what all the Widgets are doing, we can
walk through the set to find each one.

3/7

Okay, so now that we have a general idea of what this code is trying to do, let’s go back and
study the crash.

First, what is the Widget being destructed?

0:000> .frame 2

02 LitWare!Widget::~Widget+0xc8

0:000> dv

 this = 0x000001f5`89b20340

Okay, remember that number.

Next, is the std::set corrupted?

0:000> dx LitWare!Widget::s_allWidgets

LitWare!Widget::s_allWidgets : { size=0x1 }

 [<Raw View>]

 [comparator] : less

 [allocator] : allocator

0:000> ?? LitWare!Widget::s_allWidgets

class std::set<Widget *,std::less<Widget *>,std::allocator<Widget *> >

 +0x000 _Mypair : std::_Compressed_pair<⟦...⟧>

0:000> ?? LitWare!Widget::s_allWidgets._Mypair

class std::_Compressed_pair<⟦...⟧>

 +0x000 _Myval2 : std::_Compressed_pair<⟦...⟧>

0:000> ?? LitWare!Widget::s_allWidgets._Mypair._Myval2

class std::_Compressed_pair<⟦...⟧>

 +0x000 _Myval2 : std::_Compressed_pair<⟦...⟧>

0:000> ?? LitWare!Widget::s_allWidgets._Mypair._Myval2._Myval2

class std::_Tree_val<std::_Tree_simple_types<Widget *> >

 +0x000 _Myhead : 0x000001f5`89b895d0 std::_Tree_node<Widget *,void *>

 +0x008 _Mysize : 1

Okay, after digging through a bunch of compressed pairs, we finally get to the goods. There
is one element in the set, and we can look at the sentinel node.

0:000> ?? LitWare!Widget::s_allWidgets._Mypair._Myval2._Myval2._Myhead

struct std::_Tree_node<Widget *,void *> * 0x000001f5`89b895d0

 +0x000 _Left : 0x000001f5`89b800cb std::_Tree_node<Widget *,void *>

 +0x008 _Parent : 0x000001f5`65bc046e std::_Tree_node<Widget *,void *>

 +0x010 _Right : 0x000001f5`89b846e0 std::_Tree_node<Widget *,void *>

 +0x018 _Color : 1 ''

 +0x019 _Isnil : 1 ''

 +0x020 _Myval : (null)

This already looks bad, because the _Left and _Parent pointers are misaligned.
Furthermore, if the set has only one element, then the root (_Parent), left, and right nodes
should all be the same, but all of these pointers are different.

4/7

The not-yet-obviously-corrupted pointer is _Right, and chasing through shows a similar type
of corruption:

0:000> ?? LitWare!Widget::s_allWidgets._Mypair._Myval2._Myval2._Myhead->_Right

struct std::_Tree_node<Widget *,void *> * 0x000001f5`89b846e0

 +0x000 _Left : 0x000001f5`89b80268 std::_Tree_node<Widget *,void *>

 +0x008 _Parent : 0x000001f5`f69fb889 std::_Tree_node<Widget *,void *>

 +0x010 _Right : 0x000001f5`89b895d0 std::_Tree_node<Widget *,void *>

 +0x018 _Color : 1 ''

 +0x019 _Isnil : 0 ''

 +0x020 _Myval : 0x000001f5`89b20340 Widget *

0:000>

The first two pointers are corrupted, but the rest looks okay. (Notice that the _Right points
back to the sentinel node, as expected, and the _Myval is the pointer to the Widget we are
trying to remove.)

When I see a memory block that has had two pointers unexpectedly written to the start, my
instincts tell me that I might be looking at a freed memory block. It is a common design in
heap managers to store metadata about a freed memory block in the freed memory block
itself. Often, the free blocks are kept in a doubly-linked list, which explains why the corruption
is seen as two pointers.

Okay, so my working theory is that this is freed memory, which implies that the std::set has
already destructed. This theory is supported by the stack trace:

5/7

LitWare!std::_Tree<std::_Tset_traits<Widget *,

 std::less<Widget *>,

 std::allocator<Widget *>,0> >::_Eqrange+0x14

LitWare!std::_Tree<std::_Tset_traits<Widget *,

 std::less<Widget *>,

 std::allocator<Widget *>,0> >::erase+0x18

LitWare!Widget::~Widget+0xc8

LitWare!Widget::`scalar deleting destructor'+0x14

LitWare!DestroyWidget+0x15

Fabrikam!Doodad::~Doodad+0x75

Fabrikam!Doodad::`scalar deleting destructor'+0x14

Fabrikam!Doodad::Release+0x40

Contoso!Gadget::~Gadget+0x66

ucrtbase!<lambda_⟦...⟧>::operator()+0xa5

ucrtbase!__crt_seh_guarded_call<int>::operator()<⟦...⟧>+0x3b

ucrtbase!__acrt_lock_and_call+0x1c

ucrtbase!_execute_onexit_table+0x3d

Contoso!dllmain_crt_process_detach+0x45

Contoso!dllmain_dispatch+0xe6

ntdll!LdrpCallInitRoutine+0xb0

ntdll!LdrShutdownProcess+0x260

ntdll!RtlExitUserProcess+0x114

kernel32!FatalExit+0xb

ucrtbased!exit_or_terminate_process+0x3a

ucrtbased!common_exit+0x85

ucrtbased!exit+0x16

The process is exiting, and we are notifying Contoso.dll. This prompts the DLL to destruct
its global variables, one of which is apparently a Gadget, or at least it’s a global variable
whose destruction leads to the destruction of a Gadget. The destruction of the Gadget in turn
release a Doodad, which causes it to destruct, and the destructor of the Doodad calls
DestroyWidget which causes the Widget to destruct, and that’s when we notice that the
s_allWidgets has already been destructed.

We are a victim of the static initialization order fiasco, but at the other end of the story.

People usually worry about the static initialization order fiasco at the initialization side:
Making sure that objects you depend on during initialization have themselves been
initialized. But what goes up must come down, and you also have to make sure that the
object you depend on during destruction have themselves not yet been destructed.

In this case, the s_allWidgets was destructed as part of LitWare.dll‘s cleanup, even
though Contoso.dll still had plans on using it.

This can happen even in the absence of DLLs at all. Objects with static storage duration are
destructed in reverse order of construction, so we may have this:

https://en.cppreference.com/w/cpp/language/siof

6/7

// File 1 - global variable, suppose this constructs first

struct Gadget

{

 std::unique_ptr m_widget;

};
Gadget mainGadget;

// File 2 - global variable, suppose this constructs second

std::set<Widget*> s_allWidgets;

At program startup, we construct the mainGadget. The Gadget constructor doesn’t need a
Widget right away, so there’s no static initialization order fiasco. Later, we decide that the
main gadget needs a widget, so we do a m_widget = std::make_unique<Widget>(), and
this returns the newly-constructed Widget, as well as registering the widget in the s_all
Widgets set.

At destruction, the s_allWidgets destructs first, and then when the main gadget destructs, it
destructs the now-nonempty m_widget, which destructs the Widget and tries to unregister it
from the already-destructed std::set.

Using function-local statics to create the std::set on demand at first use avoids the static
initialization order fiasco, but it doesn’t help the static destruction order fiasco. The std::set
was constructed after the Gadget, so it destructs first.

This particular component used the Windows Implementation Library, so it can use wil::
ProcessShutdownInProgress() to skip the Widget-tracking code during shutdown.

Widget::~Widget()

{

 if (!wil::ProcessShutdownInProgress()) {

 auto guard = s_lock.lock_exclusive();

 s_allWidgets.erase(this);

 }

}

If you don’t use WIL, you can get a similar effect by creating your own shutdown canary.

https://github.com/microsoft/wil/wiki/Shutdown-aware-objects#processshutdowninprogress

7/7

bool s_shuttingDown = false;

std::set<Widget*> s_allWidgets;

// Put the canary last so that it destructs first.

struct shutdown_canary

{

 ~shutdown_canary() { s_shuttingDown = true; }

} s_widgetShutdownCanary;

Widget::~Widget()

{

 if (!s_shuttingDown)

 auto guard = s_lock.lock_exclusive();

 s_allWidgets.erase(this);

 }

}

Bonus chatter: Afterward, I was able to confirm my theory that the memory for the std::set
had indeed been freed.

0:000> !heap -p -a 0x000001f5`89b895d0

 address 000001f589b895d0 found in

 _HEAP @ 1f589000000

 HEAP_ENTRY Size Prev Flags UserPtr UserSize - state

 000001f589b895d0 0048 0000 [00] 000001f589b895d0 00048 - (free)

0:000> !heap -p -a 0x000001f5`89b846e0

 address 000001f589b846e0 found in

 _HEAP @ 1f589000000

 HEAP_ENTRY Size Prev Flags UserPtr UserSize - state

 000001f589b846e0 0048 0000 [00] 000001f589b846e0 00048 - (free)

