A simplified overview of ways to add or update elements

in a std::map

=. devblogs.microsoft.com/oldnewthing/20250113-00

oL Pl | ||

L
r

January 13, 2025

Some time ago, | mentioned how the std: : map subscript operator is a dangerous
convenience. In that article, | linked to an overview of the insertion emplacement methods,
but I'm going to recapture the essential points in a table.’

In the table below, the discussion of “consumed” or “not consumed” refers to the case that v
is an rvalue reference like std: :move(something).

Statement

If key present

If key not present

m.insert ({ k, v });

No effect, v is consumed

Added, v is consumed

m.emplace (k, Vv);

No effect, v is consumed

Added, v is consumed

m.try emplace(k, v);

No effect, v is not consumed

Added, v is consumed

m.insert or assign(k, v);

Updated, v is consumed

Added, v is consumed

m.at (k) = v;

Updated, v is consumed

Throws, v is not consumed

We can reorganize the table by effect.

If key present

No effect
v hot consumed

No effect
v consumed

Updated
v consumed

v);

m.try emplace (k,

m.insert ({ k, v

1)

m.insert or assign(k,
V) ;

If key Added m.emplace (k, v);
not
present | Throws m.at (k) = v;

1/4

https://devblogs.microsoft.com/oldnewthing/20250113-00/?p=110757
https://devblogs.microsoft.com/oldnewthing/20190227-00/?p=101072
https://www.fluentcpp.com/2018/12/11/overview-of-std-map-insertion-emplacement-methods-in-cpp17/

Exercise: Why are the bottom left two boxes blank?

Sidebar: | intentionally omit m[k] = v; as a possibility because behaves the same as
insert_or_assign, but with worse performance, and works in fewer circumstances: If the
key does not exist, then m[k] = v first creates a default-constructed value and inserts it into
the map, and then overwrites that default-constructed value with v. This creates an empty
value unnecessarily, and it requires that the value type be default-constructible. End sidebar

Often overlooked is that the “no effect if key is present” methods also tell you whether it did
anything. This means that you can avoid double-probing the map.

// inefficient version
if (map.contains(k)) {
already_present();
} else {
map[k] = v;
newly added();
}

// more efficient alternative
// (assuming v is easy to calculate)
if (map.try_emplace(k, v).second) {
newly_added();
} else {
already_present();

}

Instead of checking whether the map contains a key before adding the element, just try to
add it and deal with the collision.

Here’s another simplification:

// inefficient version
do {

k = gen_random_key();
} while (map.contains(k));
map[k] = v;

// more efficient alternative
do {
k = gen_random_key();

while (!'map.try_emplace(k, v).second);

Again, instead of checking whether the map contains a key before adding the element, just
try to add it and deal with the collision.

For completeness, here’s a table for reading from a map.

2/4

Statement If key present If key not present

auto& v

Il
3
i

Reference to existing value | Reference to newly-created value

auto& v = m.at (k); | Reference to existing value | Throws

Another mistake | see is code where each line makes sense on its own, but they perform
duplicate work that could be combined.

// inefficient version

if (m.find(k) !'= m.end()) {
m[k].SomeMethod();

}

// more efficient alternative
if (auto found = m.find(k); found !'= m.end()) {
found->second.SomeMethod();

}

The two pieces make sense separately. The m.find(k) != m.end() is the standard way to
detect whether a key is present in the map. And the m[k].SomeMethod () is a standard way to
invoke a method on a value stored in the map (though really, should be
m.at(k).SomeMethod()). But the second statement repeats work done by the first statement,
because m.at (k) and m[k] are justa m.find(k)->second, with an exception if the item is
not found (for m.at ()) or creating the entry if the item is not found (for m[]). If you've already
done the m.find (k) in the if statement, you can use that result instead of making m.at ()
and m[] search for it a second time. (On top of that, m[] has to create an empty entry if the
key is missing.)

I've also seen code that doesn’t realize that the [] operator creates an empty entry if the key
is not present. This manifests in two ways:

3/4

std: :map<Key, std::vector<Value>> m;

// problem 1: Creating unnecessary empty entries

m[k] = new_value;

// problem 2: Manually creating empty entries
std::vector<vValue> strings;
if (auto found = m.find(k); found != m.end())
{
strings = found->second;
}
strings.push_back(new_value);
m[k] = strings;

// better version of 1: Use insert_or_assign
m.insert_or_assign(k, new_value);

// better version of 2: Create the empty entry on demand

m[k].push_back(new_value);

Bonus chatter: In retrospect, there probably shouldn’t have been a [] operator for
std: :map, since it takes the most convenient syntax for a rarely-needed operation. It should
have been called something like m.create or_get (k).

Answer to exercise: The bottom left two boxes correspond to hypothetical operations that
throw if the key is missing, and do nothing if the key is present. This is not very useful, so the
standard provides no method to perform it. | guess you could use (void)m.at (k).

' More accurately, in another table.

4/4

https://devblogs.microsoft.com/backref:%20The%20operations%20for%20reading%20and%20writing%20single%20elements%20for%20C++%20standard%20library%20maps

