
1/4

January 9, 2025

Inside STL: Waiting for a std::atomic<:shared_ptr
class="non-delete">> to change, part 2

devblogs.microsoft.com/oldnewthing/20250109-00

Last time, we looked at how the Microsoft C++ standard library implements wait and
notify_* for std::atomic<std::shared_ptr<T>>. Today, we’ll look at the other library that
(as of this writing) implements std::atomic<std::shared_ptr<T>>: libstdc++.

The first thing to note is that the traditional “wait for a value to change” mechanism on unix is
the futex, but futexes (futexen?) are limited to 4-byte values, which is insufficient for a 64-bit
pointer, much less the two pointers inside a shared_ptr.

At this point, I will refer you to learn about how libstdc++ implements waits on atomic values,
particularly the section on how it handles types that do not fit in a __platform_wait_t. The
remainder of this discussion will treat that as an already-solved problem and focus on the
shared pointer part.

Okay, back to atomic<shared_ptr<T>>::wait():

// atomic<shared_ptr<T>>::wait

void

wait(value_type __old,

 memory_order __o = memory_order_seq_cst) const noexcept

{

 _M_impl.wait(std::move(__old), __o);

}

When you wait on a shared_ptr, the work is done by _Sp_atomic::wait:

// _Sp_atomic<shared_ptr<T>>::wait

void

wait(value_type __old, memory_order __o) const noexcept

{

 auto __pi = _M_refcount.lock(memory_order_acquire);

 if (_M_ptr == __old._M_ptr && __pi == __old._M_refcount._M_pi)

 _M_refcount._M_wait_unlock(__o);

 else

 _M_refcount.unlock(memory_order_relaxed);

}

The code locks the shared_ptr (by setting the bottom bit of the control block pointer, as we
discussed earlier), then checks whether the stored pointer and control block pointer both
match. If not, then the wait is satisfied, and we release the lock and return. Otherwise, we
ask _Atomic_count::_M_wait_unlock to finish the wait.

https://devblogs.microsoft.com/oldnewthing/20250109-00/?p=110738
https://devblogs.microsoft.com/oldnewthing/20250108-00/?p=110732
https://devblogs.microsoft.com/oldnewthing/20250107-01/?p=110724
https://developers.redhat.com/articles/2022/12/06/implementing-c20-atomic-waiting-libstdc
https://developers.redhat.com/articles/2022/12/06/implementing-c20-atomic-waiting-libstdc#how_to_handle_those_types_that_do_not_fit_in_a___platform_wait_t-h2
https://github.com/gcc-mirror/gcc/blob/dc01f249db5c4d08b76dc2783b1539290a800f2d/libstdc%2B%2B-v3/include/bits/shared_ptr_atomic.h#L729
https://github.com/gcc-mirror/gcc/blob/dc01f249db5c4d08b76dc2783b1539290a800f2d/libstdc%2B%2B-v3/include/bits/shared_ptr_atomic.h#L606
https://github.com/gcc-mirror/gcc/blob/dc01f249db5c4d08b76dc2783b1539290a800f2d/libstdc%2B%2B-v3/include/bits/shared_ptr_atomic.h#L455
https://devblogs.microsoft.com/oldnewthing/20241219-00/?p=110663
https://github.com/gcc-mirror/gcc/blob/dc01f249db5c4d08b76dc2783b1539290a800f2d/libstdc%2B%2B-v3/include/bits/shared_ptr_atomic.h#L496

2/4

// _Atomic_count::_M_wait_unlock

void

_M_wait_unlock(memory_order __o) const noexcept

{

 auto __v = _M_val.fetch_sub(1, memory_order_relaxed);

 _M_val.wait(__v & ~_S_lock_bit, __o);

}

mutable __atomic_base<uintptr_t> _M_val{0};

As the name suggests, _M_wait_unlock clears the lock bit (thereby unlocking the shared
pointer) and then waits for value to change from its current value.

Meanwhile, the notify_* methods do something similar:

// atomic<shared_ptr<T>>::notify_*

void

notify_one() noexcept

{

 _M_impl.notify_one();

}

void

notify_all() noexcept

{

 _M_impl.notify_all();

}

They forward to _Sp_atomic::notify_*:

// _Sp_atomic<shared_ptr<T>>::notify_*

void

notify_one() noexcept

{

 _M_refcount.notify_one();

}

void

notify_all() noexcept

{

 _M_refcount.notify_all();

}

And those forward to _Atomic_count::notify_*:

https://github.com/gcc-mirror/gcc/blob/dc01f249db5c4d08b76dc2783b1539290a800f2d/libstdc%2B%2B-v3/include/bits/shared_ptr_atomic.h#L735
https://github.com/gcc-mirror/gcc/blob/dc01f249db5c4d08b76dc2783b1539290a800f2d/libstdc%2B%2B-v3/include/bits/shared_ptr_atomic.h#L735
https://github.com/gcc-mirror/gcc/blob/dc01f249db5c4d08b76dc2783b1539290a800f2d/libstdc%2B%2B-v3/include/bits/shared_ptr_atomic.h#L505

3/4

// _Atomic_count::notify_*

void

notify_one() noexcept

{

 _M_val.notify_one();

}

void

notify_all() noexcept

{

 _M_val.notify_all();

}

mutable __atomic_base<uintptr_t> _M_val{0};

which forward the notify to the atomic value.

So at the end of the day, waiting on and notifying an atomic shared pointer boils down to
waiting on and notifying its control block pointer.

But hang on a second. The language specification says that a wait on an atomic shared
pointer is satisfied when either the stored pointer or the control block pointer changes. But
this code waits only for the control block pointer to change. Do we have a bug?

Let’s write a test program to see whether our theory holds up, or whether there’s something
else (like msvc’s exponential backoff) that saves us.

#include <memory>

#include <chrono>

#include <thread>

std::shared_ptr<int> q = std::make_shared<int>(42);

std::atomic<std::shared_ptr<int>> p = q;

void signaler()

{

 std::this_thread::sleep_for(std::chrono::seconds(1));

 p.store({ q, nullptr });

 p.notify_one();

 std::this_thread::sleep_for(std::chrono::seconds(1));

 std::terminate();

}

int main(int, char**)

{

 std::thread(signaler).detach();

 p.wait(q);

 return 0;

}

4/4

This program starts a thread that waits one second to give the main thread a chance to
reach p.wait(). It then changes the atomic shared pointer by modifying only the stored
pointer and reusing the control block, and then notifies the main thread. If the program is still
running after one second, then the wait was not woken, and we terminate the program.

Meanwhile, after starting the signaler thread, the main thread waits on the atomic shared
pointer, and when the wait is satisfied, it exits the program.

You expect this program to exit cleanly. The signaling thread modifies the atomic shared
pointer, which satisfies the wait. (Even if we didn’t sleep one second before modifying the
atomic shared pointer, the wait would still be satisfied because the value in the atomic
shared pointer no longer matches q.)

In practice, this program crashes at the std::terminate.

So it looks like we found a bug in libstdc++. (-dumpversion says 14.2.0.) Waiting on an
atomic shared pointer does not notify if the the shared pointer changed only its stored pointer
and not its control block. The atomic wait should be a 16-byte wait that covers both the
stored pointer and the control block pointer.

Bonus chatter: I find it interesting that the language specification added wait/notify support
to atomic shared pointers as an afterthought, with barely any discussion or contemplation, as
if it had been deemed too trivial to be worth worrying about. And two of the three major
implementations messed it up. (What about the third major implementation, clang’s libc++?
Oh, they haven’t implemented it yet!)

I was curious about this topic because the first thing that struck me about notify/wait on
atomic shared pointers was “Gosh, shared pointers are twice the size of regular pointers. I
wonder how the implementations manage to wait atomically on something that is larger than
a register?” And when I dug into the implementations, I found that the answer was “not
correctly.”

http://wg21.link/p1644r0
https://devblogs.microsoft.com/oldnewthing/20241219-00/?p=110663

