
1/2

November 7, 2024

Why do I observe reads from a memory-mapped file
when writing large blocks?

devblogs.microsoft.com/oldnewthing/20241107-00

A customer had created a memory-mapped file, and wanted to set large chunks of the
memory to zero. For concreteness, consider this function that takes a memory-mapped file
mapping (map) and a collection of blocks, each represented as a file offset and length. Its job
is to set each block to zero.

void ZeroOutBlocks(uint8_t* map,

 std::initializer_list<

 std::pair<uint32_t, uint32_t>> blocks)

{

 for (auto&& block : blocks) {

 memset(map + block.first, 0, block.second);

 }

}

The customer found that even though this function is performing only write operations, a
performance trace showed that the system was nevertheless reading from the file.

Memory-mapped files work by trapping the first access to each page. When the access
occurs, the entire page is read from the disk, mapped into memory, and then the memory
access operation is permitted to proceed.

The system does this regardless of whether the access was a read or a write. After all, that
one written byte has to be merged with the existing content of the page.

“But in my case, the offsets and lengths are all page multiples, so there is no need to read
the entire page into memory.”

Well, you know that, but the CPU doesn’t.

https://devblogs.microsoft.com/oldnewthing/20241107-00/?p=110486

2/2

The CPU sees the first write to the page and traps to the kernel. The operating system
doesn’t go to the trouble of analyzing the code surrounding the fault and realizing that this
code sequence:

@@: vmovntdq ymmword ptr [rcx],ymm0

 vmovntdq ymmword ptr [rcx+20h],ymm0

 vmovntdq ymmword ptr [rcx+40h],ymm0

 vmovntdq ymmword ptr [rcx+60h],ymm0

 vmovntdq ymmword ptr [rcx+80h],ymm0

 vmovntdq ymmword ptr [rcx+0A0h],ymm0

 vmovntdq ymmword ptr [rcx+0C0h],ymm0

 vmovntdq ymmword ptr [rcx+0E0h],ymm0

 add rcx,100h

 sub r8,100h

 cmp r8,100h

 jae @B

is a memset loop that writes r8 ÷ 256 × 8 copies of the ymm0 register to consecutive bytes of
memory.

But suppose the operating system had code to recognize the top 50 most common
implementations of memset. And suppose that it saw that the memset was going to write an
entire page of zeroes. In that case, could it avoid the useless read?

I guess the operating system could do that. It would have to realize that this was a full-page
memset and perform the same memset on the newly-mapped page before making the
memory visible to the process (in case other threads read from the page before the faulting
thread finishes the loop).

Still, that’s a lot of memset detection, since it would have to run at every write page fault. I
suspect the write page faults that are due to memset of more than one page represent too
small a fraction of total write page faults to be worth the trouble.

But who knows. My intuition on this has been wrong before.

Update: Commenter Nir Lichtman pointed out that memory-mapped files and I/O are not
necessarily coherent, so the WriteFile trick doesn’t work.

What you can do instead is write zeroes to the memory-mapped file the old-fashioned way:
with WriteFile. Since Windows NT unifies memory-mapped files with the file cache, these
writes will be coherent with the memory mapping. If you want to get fancy, you can use
overlapped writes and wait for them all to complete.

You need only set aside one page of zeroes for this trick. For regions up to a page in size,
you can issue a WriteFile from your special zero-buffer. Regions larger than a page can be
broken up into page-sized chunks, or you can use WriteFileGather to write that page to
consecutive pages in the file.

https://devblogs.microsoft.com/oldnewthing/20161109-00/?p=94675

