
3/2/24, 7:59 AM On the virtues of the trailing comma - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240209-00/ 1/5

February 9, 2024

On the virtues of the trailing comma
devblogs.microsoft.com/oldnewthing/20240209-00

Raymond Chen

Many programming languages allow trailing commas in lists.

C, C++, C# (and probably other languages) permit a trailing comma after the last
enumerator:

enum Color
{
 Red,
 Blue,
 Green,
 // ^ trailing comma
};

They also allow a trailing comma in list initializers.

https://devblogs.microsoft.com/oldnewthing/20240209-00/?p=109379

3/2/24, 7:59 AM On the virtues of the trailing comma - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240209-00/ 2/5

// C, C++
Thing a[] = {
 { 1, 2 },
 { 3, 4 },
 { 5, 6 },
 // ^ trailing comma
};

// C#
Thing[] a = new[] {
 new Thing {
 Name = "Bob",
 Id = 31415,
 // ^ trailing comma
 },
 new Thing {
 Name = "Alice",
 Id = 2718,
 // ^ trailing comma
 },
// ^ trailing comma
};

Dictionary d = new Dictionary<string, Thing>() {
 ["Bob"] = new Thing("Bob") { Id = 31415 },
 ["Alice"] = new Thing("Alice", 2718),
 // ^ trailing comma
};

These trailing commas are convenient when you arrange for each element to appear on its
own line, like we did in the examples above. It lets you rearrange the items by moving lines
around without having to worry about having to add a comma to an element when it moves
out of the final position, or removing a comma from the element that moved into the final
position.

It also reduces merge risk when people modify the list. For example, if somebody adds a
new color “Black” to the end, they won’t have to touch any of the other lines, which means
that a change from “Blue” to “LightBlue” won’t result in a merge conflict.

And even when there is a merge conflict due to two simultaneous adds, you can easily
resolve it by accepting both.

3/2/24, 7:59 AM On the virtues of the trailing comma - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240209-00/ 3/5

enum Color
{
 Red,
 Blue,
 Green,
<<< VERSION 1
 Black,
|||
 White,
<<< VERSION 2
};

To resolve this, you can just delete all the conflict markers.

enum Color
{
 Red,
 Blue,
 Green,
 Black,
 White,
};

If your code didn’t use trailing commas, the merge would be messier:

enum Color
{
 Red,
 Blue,
<<< VERSION 1
 Green,
 Black
|||
 Green,
 White
<<< VERSION 2
};

And if you have a lot of these merges to deal with, you might forget to insert a comma after
“Black”:

enum Color
{
 Red,
 Blue,
 Green,
 Black // ⇐ oops, forgot a comma
 White
};

3/2/24, 7:59 AM On the virtues of the trailing comma - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240209-00/ 4/5

Since the trailing comma reduces the number of lines of code that have to be modified when
the list is extended, it also makes git blame more accurate. Without the trailing comma, a
git blame on enum Color would blame the person who added “Black” for also being the last
person to modify the “Green” line. If you’re investigating a problem with “Green”, you might
ask that person for help, and they’ll say, “Oh no, I didn’t add ‘Green’. I added ‘Black’. You’ll
have to dig further back into the history to figure out who added ‘Green’.”

C

Thank

C++

you

C#

for

Java

supporting

JSON

Not you

JavaScript

trailing

Rust

commas

Go

in

Python

lists

Bonus chatter: The trailing comma also makes it easier for code generators, since they can
just emit a comma after each element and not have to worry about suppressing the final
comma.

Bonus bonus chatter: But why not go all the way and allow a trailing comma in parameter
lists?

SomeFunction(1, 2,);
// ^ trailing comma not allowed

I suspect the primary reason is “nobody asked for it.” Variadic functions are relatively
uncommon, so this is not something that code generators stumble across. Also, that extra
comma just plain looks weird.

Overloaded functions could pose a parsing problem. If there are 2-parameter and 3-
parameter overloads of SomeFunction, is this a call to the two-parameter overload, or is it a
call to the three-parameter overload with some sort of default?

3/2/24, 7:59 AM On the virtues of the trailing comma - The Old New Thing

https://devblogs.microsoft.com/oldnewthing/20240209-00/ 5/5

Bonus bonus bonus chatter: JavaScript, Rust, and Ruby allow a trailing comma in
parameter lists.

Bonus bonus bonus bonus chatter: In the Pascal programming language, the semicolon
is a statement separator, not a statement terminator, so you can write

begin
 i := 1;
 j := 2 (* no trailing semicolon *)
end

In practice, everybody puts a semicolon just before the end. Imaging rearranging two lines of
code and having to adjust semicolons.

