
1/8

December 28, 2023

On calling AfxConnectionAdvise with bAddRef set to
FALSE

devblogs.microsoft.com/oldnewthing/20231228-00

Raymond Chen

A customer had a question about the AfxConnectionAdvise function when you set bAddRef
to FALSE.

According to the documentation,

BOOL AFXAPI AfxConnectionAdvise(

 LPUNKNOWN pUnkSrc,

 REFIID iid,

 LPUNKNOWN pUnkSink,

 BOOL bRefCount,

 DWORD FAR* pdwCookie);

bRefCount

TRUE indicates that creating the connection should cause the reference count of

pUnkSink to be incremented. FALSE indicates that the reference count should not be
incremented.

They are passing FALSE for bAddRef when they connect to an out-of-process COM server.
What they found is that not only does this suppress the increment of the sink’s reference
count, it in fact does a spurious decrement of the reference count, causing the sink to be
destroyed.

The customer looked at the source code for AfxConnectionAdvise and saw that if you pass
FALSE for bAddRef, then it calls Release on the sink after a successful registration.

https://devblogs.microsoft.com/oldnewthing/20231228-00/?p=109198
https://learn.microsoft.com/cpp/mfc/reference/connection-maps?view=msvc-170#afxconnectionadvise
https://github.com/mirror/winscp/blob/3266c40c2d98ae659b1e8fe32a596697f8bdacf0/libs/mfc/source/ctlconn.cpp#L147

2/8

BOOL AFXAPI AfxConnectionAdvise(LPUNKNOWN pUnkSrc, REFIID iid,

 LPUNKNOWN pUnkSink, BOOL bRefCount, DWORD* pdwCookie)

{

 ASSERT_POINTER(pUnkSrc, IUnknown);

 ASSERT_POINTER(pUnkSink, IUnknown);

 ASSERT_POINTER(pdwCookie, DWORD);

 BOOL bSuccess = FALSE;

 LPCONNECTIONPOINTCONTAINER pCPC;

 if (SUCCEEDED(pUnkSrc->QueryInterface(

 IID_IConnectionPointContainer,

 (LPVOID*)&pCPC)))

 {

 ASSERT_POINTER(pCPC, IConnectionPointContainer);

 LPCONNECTIONPOINT pCP;

 if (SUCCEEDED(pCPC->FindConnectionPoint(iid, &pCP)))

 {

 ASSERT_POINTER(pCP, IConnectionPoint);

 if (SUCCEEDED(pCP->Advise(pUnkSink, pdwCookie)))

 bSuccess = TRUE;

 pCP->Release();

 // The connection point just AddRef'ed us. If we don't want to

 // keep this reference count (because it would prevent us from

 // being deleted; our reference count wouldn't go to zero),

 // then we need to cancel the effects of the AddRef by calling

 // Release.

 if (bSuccess && !bRefCount)

 pUnkSink->Release();

 }

 pCPC->Release();

 }

 return bSuccess;

}

It is apparent from the comment “The connection point just AddRef’ed us” that Afx‐
ConnectionAdvise expects the IConnectionPoint::Advise method to increment the
reference count of the sink, because it is doing a bonus Release to counteract that AddRef.

Is this a valid assumption?

No.

3/8

One case where IConnectionPoint::Advise would not increment the reference count on
the sink is the somewhat pathological case where the source knows that it will never call the
event sink, so there’s no point remembering it.

It’s like if somebody hands you a slip of paper and says, “Make sure to call this number if the
antenna falls down,” but your television set doesn’t have an antenna at all. In that case, you
can just throw away the slip of paper since you know you will never need it.

Now, as I noted, this is a rather pathological case. After all, a connection point container is
unlikely to advertise a connection point that does nothing.¹

The customer is encountering another case, though: Reference count aggregation through a
proxy.

When a COM object is passed to another context (in this case, to another process), the client
receives a proxy object. To reduce cross-context chatter, each proxy retains a single
reference to the real object on the other side, and any local reference counts are aggregated
in the proxy.

For example, suppose we have an object on the server with a single reference held by a
client process.

Server Client

 pObject

 ⇓

Object

refcount = 1

🡄 Object proxy

refcount = 1

In these diagrams, heavy arrows are those that cross process boundaries.

If the client calls pObject->AddRef() to increment the reference count, COM merely
increments the reference count of the proxy. It doesn’t send an AddRef call over the wire to
the server. After the client calls AddRef, we have this:

Server Client

 pObject

 ⇓

Object

refcount = 1

🡄 Object proxy

refcount = 2

4/8

Notice that the reference count of the proxy has gone up to 2, but there is no change to the
reference count of the original object on the server. The proxy aggregates all the references
from the client, and only a single reference count is retained from the proxy to the original
object. When the proxy’s reference count drops to zero, then the proxy is destroyed, and
only then does the proxy send a Release to the original object.

Okay, now we can set up our story. Suppose you register the same sink against multiple
connection points in a remote process. From the point of view of the sink, those remote
processes are all clients. (Of course, from the point of view of the connection points, your
process is the client.)

ComPtr<IDispatch> sink = ⟦ create a sink ⟧;

ComPtr<IConnectionPoint> point1 = ⟦ some remote object ⟧;

ComPtr<IConnectionPoint> point2 = ⟦ some remote object ⟧;

DWORD cookie1, cookie2;

point1->Advise(sink.Get(), &cookie1);

point2->Advise(sink.Get(), &cookie2);

This is what things look like before the first Advise:

You Them

point1 ⇒ Point1 Proxy

refcount = 1

🡆 Point1 Object

refcount = 1

sink ⇒ Sink Object

refcount = 1

point2 ⇒ Point2 Proxy

refcount = 1

🡆 Point2 Object

refcount = 1

The only reference to the sink object is the one you hold in the sink local variable.

After the first Advise, the Point1 object now holds a reference to the Sink Object, through its
own proxy on their side.

You Them

5/8

point1 ⇒ Point1 Proxy

refcount = 1

🡆 Point1 Object

refcount = 1

 ⇓

sink ⇒ Sink Object

refcount = 2

🡄 Sink Proxy

refcount = 1

point2 ⇒ Point2 Proxy

refcount = 1

🡆 Point2 Object

refcount = 1

With the second Advise, things get interesting:

You Them

point1 ⇒ Point1 Proxy

refcount = 1

🡆 Point1 Object

refcount = 1

 ⇓

sink ⇒ Sink Object

refcount = 2

🡄 Sink Proxy

refcount = 2

 ⇑

point2 ⇒ Point2 Proxy

refcount = 1

🡆 Point2 Object

refcount = 1

COM realizes that it already has a proxy for the sink object on their side, so instead of
creating a second proxy, it just reuses the existing one. When Point2 calls AddRef to retain a
reference to the sink, the AddRef is cached by the proxy, and no AddRef happens on the
original sink.

What we did above was roughly equivalent to calling AfxConnectionAdvise with bAddRef set
to TRUE.

Now let’s do it again with bAddRef set to FALSE.

6/8

ComPtr<IDispatch> sink = ⟦ create a sink ⟧;

ComPtr<IConnectionPoint> point1 = ⟦ some remote object ⟧;

ComPtr<IConnectionPoint> point2 = ⟦ some remote object ⟧;

DWORD cookie1, cookie2;

point1->Advise(sink.Get(), &cookie1);

sink->Release(); // New!

point2->Advise(sink.Get(), &cookie2);

sink->Release(); // New!

Everything is the same through the first Advise:

You Them

point1 ⇒ Point1 Proxy

refcount = 1

🡆 Point1 Object

refcount = 1

 ⇓

sink ⇒ Sink Object

refcount = 2

🡄 Sink Proxy

refcount = 1

point2 ⇒ Point2 Proxy

refcount = 1

🡆 Point2 Object

refcount = 1

But this time, since bAddRef is FALSE, the AfxConnectionAdvise function tries to undo the
AddRef performed by the connection point by doing a sink->Release().

You Them

point1 ⇒ Point1 Proxy

refcount = 1

🡆 Point1 Object

refcount = 1

 ⇓

sink ⇒ Sink Object

refcount = 1

🡄 Sink Proxy

refcount = 1

point2 ⇒ Point2 Proxy

refcount = 1

🡆 Point2 Object

refcount = 1

7/8

The sink object’s reference count is back down to 1, so it’s as if the sink proxy’s AddRef had
never occurred.

Now we do the second Advise:

You Them

point1 ⇒ Point1 Proxy

refcount = 1

🡆 Point1 Object

refcount = 1

 ⇓

sink ⇒ Sink Object

refcount = 1

🡄 Sink Proxy

refcount = 2

 ⇑

point2 ⇒ Point2 Proxy

refcount = 1

🡆 Point2 Object

refcount = 1

The AddRef from the second connection point to the sink is cached in the proxy and is not
communicated to the original sink in the server process.

Nevertheless, AfxConnectionAdvise sees that bAddRef is set to FALSE, so it performs a
second sink->Release(), and bad things happen:

You Them

point1 ⇒ Point1 Proxy

refcount = 1

🡆 Point1 Object

refcount = 1

 ⇓

sink ⇒ Sink Object

refcount = 0

🡄 Sink Proxy

refcount = 2

 ⇑

point2 ⇒ Point2 Proxy

refcount = 1

🡆 Point2 Object

refcount = 1

Oh no, the sink object’s reference count has dropped to zero! This destructs the sink, leaving
the sink variable and the sink proxy with pointers to freed memory.

8/8

You Them

point1 ⇒ Point1 Proxy
refcount = 1

🡆 Point1 Object
refcount = 1

 ⇓

sink ⇒ (freed memory) 🡄 Sink Proxy
refcount = 2

 ⇑

point2 ⇒ Point2 Proxy
refcount = 1

🡆 Point2 Object
refcount = 1

The original authors of AfxConnectionAdvise made an invalid assumption, namely that a
successful Advise necessarily increments the reference count on the sink. In the case of
remote connection points, the reference counts of those remote connection points are
aggregated on the remote side, and only a single reference count is maintained on the
server side. The Release() call thinks it is counteracting the AddRef() on the client side, but
really it’s counteracting a nonexistent AddRef() on the server side.

You break the COM rules at your own peril.

Moral of the story: This is a design flaw in AfxConnectionAdvise. Do not call it with bAddRef
set to FALSE. Instead of playing games with COM reference counts trying to simulate a weak
reference, use a proper weak reference to the sink.

¹ And it may end up not being a valid implementation anyway, because the connection point
is expected to produce those clients in response to IConnectionPoint::EnumConnections,
so it is obligated to retain references to them even though it has no use for them.

