Don’t keep state in your XAML item templates; put the
state in the items

=. devblogs.microsoft.com/oldnewthing/20231226-00

December 26, 2023

Raymond Chen

When you apply a template to an item in XAML, the template is used to create an element

(known as a “container”) which is ued to represent the item in the user interface. However,

the pairing between items and containers can change over time, so you need to make sure
you keep your state in the item and not in the container.

Some XAML collections are virtualizing_collections, meaning that they generate XAML
elements only when needed for display (or anticipated to be needed for display). If you
create a XAML ListView with ten thousand items, the ListView will create containers only for
the 50 items that are visible, plus a few hundred containers for the items that are just out of
view, so they can be scrolled in quickly. But the other 9,000+ items will not have containers
yet.

As you scroll through the collection, the items that you scroll too far away from lose their
containers and become virtualized out. Meanwhile, items that scroll into view (or nearly so)
become devirtualized and gain a container.

In the following diagram, we have a collection of 15 items. Items 7 through 9 are in view, so
containers are created for those items so they can be displayed on the screen. We say that
these items are “devirtualized” or “realized”. Furthermore, a few items that are just outside
the view are also devirtualzed/realized. In the example, I'll realize one screen’s worth before
and after the view, so items 4 through 6, and items 10 through 12. In total, items 4 through
12 have been realized: 4 through 6 are ready for display if the user scrolls upward, 7 through
9 are on the display right now, and 10 through 12 are ready for display if the user scrolls
downward. Let’s say that the items which are in view or just outside the view are in the
“realization region”.

Item 1
Item 2

Item 3

1/4


https://devblogs.microsoft.com/oldnewthing/20231226-00/?p=109187
https://learn.microsoft.com/windows/uwp/debug-test-perf/optimize-gridview-and-listview#ui-virtualization

Item 4 Container

ltem 5 Container Almost in view
Item 6 Container

ltem 7 Container

ltem 8 Container In view

Item 9 Container

Item 10 Container

Item 11 Container Almost in view
ltem 12 Container

Item 13

Item 14

Item 15

If the user scrolls downward one item, then item 4 falls out of the “almost in view” zone, and
the item loses its container. Meanwhile, item 13 enters the “almost in view” zone, and it gains
a container. ltems 5 through 12 retain their containers since they are still within the

realization region.

Item 1

ltem 2

Item 3

Item 4 (No container)

ltem 5 Container

Item 6 Container Almost in view
Item 7 Container

ltem 8 Container

Item 9 Container In view
Item 10 Container

Item 11 Container

2/4



Item 12 Container Almost in view

Item 13 Container

Item 14

Item 15

The relization region moves around as the user scrolls through the collection.

When an item scrolls out of the realization region, it is disconnected from its container, and
the container returns to a small cache of “available containers”. When an item scrolls into the
realization region, it is connected to a container (from the cache, if available).

The connection between an item and its container is only temporary. It's like one of those
political dramas with constantly-changing alliances.

This means that you cannot rely on the containers remembering anything for you, since you
lose it when the item scrolls out of view. For example, here’s an example of a problematic
item template:

<DataTemplate x:DataType="Widget">
<StackPanel>
<TextBlock Content="{x:Bind Name}" />
<ListBox x:Name="ReportsList" />
<Button Content="Load reports" Click="LoadReports" />
</StackPanel>
</DataTemplate>

The idea here is that the list starts out empty, but if you click the “Load reports” button, then
the code-behind populates the ReportsList.

If you do this, then strange things will happen when you start scrolling through the view. You
might click “Load reports” for item 1, and then scroll all the way to the bottom, and when you
scroll back up to item 1, those reports you loaded are gone! Even stranger, the reports you
loaded for item 1 somehow show up in item 75.

What happened is that when you scrolled too far away, item 1 lost its container, and when
you scrolled back to item 1, it got a different container, and the reports you loaded aren’t
present in the new container.

This also explains why the reports you loaded into item 1 mysteriously appeared in item 75:
The container that had been used for item 1 was recycled for item 75.

The problem is that you were recording state in the container, rather than recording it in the
item itself. Containers can get lost and recycled, and that applies to any state you had stored
in them.

3/4



The way to fix this is to keep the list of loaded reports in the item, not in the container:

<DataTemplate x:DataType="Widget">
<StackPanel>
<TextBlock Content="{x:Bind Name}" />
<ListBox ItemsSource="{x:Bind LoadedReport}" />
<Button Content="Load reports" Click="LoadReports" />
</StackPanel>
</DataTemplate>

Storing the loaded reports in the item allows them to survive changes in container.

And while you're there, you can simplify matters by making LoadReports a method on the
item rather than a method on the page.

<DataTemplate x:DataType="Widget">
<StackPanel>
<TextBlock Content="{x:Bind Name}" />
<ListBox ItemsSource="{x:Bind LoadedReport}" />
<Button Content="Load reports" Click="{x:Bind LoadReports}" />
</StackPanel>
</DataTemplate>

If there are some parts of the data template that you can’t (or don’t want to) make driven by

data-binding, you can reset the container to a “clean” state in your ContainerContent-
changing event handler. Details are available in the GridView and ListView optimization
guide.

4/4


https://learn.microsoft.com/windows/uwp/debug-test-perf/optimize-gridview-and-listview

