
1/6

December 11, 2023

The mysterious second parameter to the x86 ENTER
instruction

devblogs.microsoft.com/oldnewthing/20231211-00

Raymond Chen

The x86 instruction set has an ENTER instruction which builds a stack frame. It is almost
always used with a zero as the second parameter.

 enter n, 0

This is functionally equivalent to

 push ebp

 mov ebp, esp

 sub esp, n

But what happens if you increase that second parameter beyond zero?

Values greater than zero for the second parameter are intended for languages like Pascal
which support nested functions that can access the local variables of their lexical parents.
We learned about these functions a short time ago. But the designers of the x86 instruction
set had a different design in mind for how a function can access the variables of its lexical
parent: Instead of receiving a pointer to the start of a linked list of lexical parent frames, they
receive an array of pointers to lexical parent frames.

In its full generality, the

 enter n, k + 1

instruction goes like this:

 push ebp

 mov internal_register, esp

 sub ebp, 4 ⎱ k times

 push [ebp] ⎰

 push internal_register

 mov ebp, internal_register

 sub esp, n

https://devblogs.microsoft.com/oldnewthing/20231211-00/?p=109126
https://devblogs.microsoft.com/oldnewthing/20231204-00/?p=109095

2/6

If you ignore the order of operations and worry just about the final state, then you can
reinterpret it like this, which I think captures the essence of the instruction better:

 push ebp

 push [ebp-4]

 push [ebp-8] k pushes

 :

 push [ebp-4*k]

 lea ebp, [esp + 4*k] ; where we pushed the previous ebp

 push ebp		 ; add our own frame to the array

 sub esp, n

Let’s look at our example function again.

function Outer(n: integer) : integer;

 var i: integer;

 procedure Update(j: integer);

 begin

 i := i + j

 end;

 procedure Inner(m: integer);

 procedure MoreInner;

 begin

 Update(m)

 end;

 (* Inner body begins here *)

 begin

 MoreInner

 end;

(* Outer body begins here *)

begin

 i := 0;

 Inner(n);

 Outer := i

end;

On entry to Outer, the stack looks like this:

n parameter

return address ← esp

3/6

The Outer function establishes its stack frame by performing an enter 4, 1. The extra 1 at
the end means that this is the outermost of a chain of nested functions. In our cookbook, k is
zero, so the functional equivalent is

 push ebp

 ; no pointers copied from parent

 lea ebp, [esp+0] ; equivalently, "mov ebp, esp"

 push ebp ; pointer to our own frame

 sub esp, 4

and we wind up with this stack frame for Outer:

 Outer frame

 n parameter

 return address

 ▶︎ previous ebp ← ebp

 Outer frame pointer

 i ← esp

That extra ,1 caused us to push the address of where we saved the previous ebp, which I’ve
called the Outer frame pointer. That value isn’t really useful to us right now, since we already
have that value in the ebp register. But it comes in handy when we call Inner.

On entry to Inner, the stack looks like this:

 m parameter

 return address ← esp

The Inner function performs an enter 0, 2. The 0 means that Inner has no local variables,
and the 2 means that we are now the second level in a chain of nested functions.

The functional equivalent now has one extra memory push before we push a pointer to our
own frame:

4/6

 push ebp

 push [ebp-4] ; one pointer copied from parent

 lea ebp, [esp+4]

 push ebp ; pointer to our own frame

 sub esp, 4

Before pushing the address of its own frame, the enter instruction also copies one pointer
from the parent’s frame, namely the Outer frame pointer.

 Inner frame

 m parameter Outer frame

 return address n parameter

 ▶︎ previous ebp ← ebp return address

 Outer frame pointer ▶︎ previous ebp

 Inner frame pointer ← esp Outer frame pointer

 i

Now things are interesting.

The Inner function has access to its own frame, via the ebp register (and redundantly via the
Inner frame pointer on its stack). It also has access to the Outer frame through its local copy
of the Outer frame pointer.

The next thing that happens is that Inner calls MoreInner with no parameters. This time
MoreInner uses enter 0, 3 where the 0 means that MoreInner has no local variables, and
the 3 means that it is a nested function three levels deep, so it should copy two frame
pointers from its parent.

 MoreInner frame

 return address Inner frame

 ▶︎ previous ebp m parameter Outer frame

5/6

 Outer frame pointer return address n parameter

 Inner frame pointer ▶︎ previous ebp return address

 MoreInner frame
pointer

 Outer frame
pointer

 ▶︎ previous ebp

 Inner frame
pointer

 Outer frame
pointer

 i

The frame for MoreInner contains its own parameters and local variables (nothing), plus
pointers to both parent frames, plus a pointer to its own frame (which MoreInner doesn’t use,
but which is ready for any nested function to use).

The code generation for MoreInner therefore reads the value of m by following the Inner
frame pointer and then reading the m parameter from the Inner frame’s parameter space.

After MoreInner calls Update, the Update function starts with an enter 0, 2 because it is a
level-2 nested function. This copies only the Outer frame pointer to Update‘s frame, resulting
in this:

 Update frame

 j parameter Outer frame

 return address n parameter

 ▶︎ previous ebp ← ebp return address

 Outer frame pointer ▶︎ previous ebp

 Update frame pointer ← esp Outer frame pointer

6/6

 i

I didn’t draw it, but the “previous ebp” in the Update frame points to the MoreInner frame.

The Update function reads j from its own parameter space and uses to update the i variable
in Outer‘s frame by following the Outer frame pointer.

The result is the same as the System V Application Binary Interface static chain pointer, but
it’s done in a different way. Instead of passing the head of a linked list of frames, the enter
instruction copies an entire array of pointers to frames. This reduces the number of
instructions required in order to access faraway frames, but it increases the cost of a function
call due to the extra copying.

I wonder if anybody uses the Intel design for nested functions. I suspect it’s silicon on the
CPU that is completely wasted.

https://devblogs.microsoft.com/oldnewthing/20231204-00/?p=109095

