
1/4

December 4, 2023

What is a static chain pointer in the context of calling
convention ABI?

devblogs.microsoft.com/oldnewthing/20231204-00

Raymond Chen

Buried deep in the System V Application Binary Interface document for the AMD64
Architecture, there is a footnote on page 24 that says, “%r10 is used for passing a function’s
static chain pointer.” What is a static chain pointer?

Some languages, such as Pascal, supported nested functions such that the nested function
is permitted to access variables from its parent.

function Outer(n: integer) : integer;

 var i: integer;

 procedure Inner(m: integer);

 begin

 i := i + m

 end;

(* Outer body begins here *)

begin

 i := 0;

 Inner(n);

 Outer := i

end;

The Outer function doesn’t do anything useful, but it does it in an interesting way.

It begins with a local variable declaration for i, and then defines a local procedure Inner
which adds its parameter m to the Outer variable i. The Outer function then initializes i to
zero, calls Inner(n) (which adds n to i), and then returns the modified value of i.

This is just the identity function, but it calculates the result with the help of an inner function.

The way this works is that the Inner function receives a hidden parameter that tells it where
the Outer procedure’s local variables are.

In practice, what is passed is a pointer to the Outer procedure’s stack frame.

https://devblogs.microsoft.com/oldnewthing/20231204-00/?p=109095

2/4

Now, if the containing function or precedure happens itself to be nested, then you can use
the parent’s frame to access the local variables of the grandparent.

function Outer(n: integer) : integer;

 var i: integer;

 procedure Inner(m: integer);

 procedure MoreInner

 begin

 i := i + m

 end

 begin

 MoreInner

 end;

(* Outer body begins here *)

begin

 i := 0;

 Inner(n);

 Outer := i

end;

In this case, the MoreInner receives a hidden pointer to Inner‘s stack frame, which lets it
access the m parameter from Inner. But Inner is itself a nested procedure and therefore
received a pointer to Outer‘s stack frame. Therefore, MoreInner can use that pointer to
access Outer‘s local variable i.

Here’s what it looks like in a diagram:

MoreInner Inner Outer

chain ➝ chain ➝ n

 m i

This is called a static chain because the structure of the chain is based on lexical scoping,
not dynamic scoping. You can see the difference in this example:

3/4

function Outer(n: integer) : integer;

 var i: integer;

 procedure Update(j: integer);

 begin

 i := i + j

 end;

 procedure Inner(m: integer);

 procedure MoreInner;

 begin

 Update(m)

 end;

 (* Inner body begins here *)

 begin

 MoreInner

 end;

(* Outer body begins here *)

begin

 i := 0;

 Inner(n);

 Outer := i

end;

This version is even more useless than the previous one: MoreInner doesn’t update i
directly, but instead asks Update (an uncle procedure) to do it.

At the point that MoreInner calls Update, it does not pass its own stack frame as the static
chain pointer. Instead, it passes Outer‘s stack frame, because Update‘s parent is Outer.

The static chain does not match the dynamic call stack: The call stack says that Update‘s
caller is MoreInner but the static chain says that Update‘s parent is Outer.

Update MoreInner Inner Outer

frame pointer ➝ frame pointer ➝ frame pointer ➝ frame pointer

chain n

 chain ➝ chain ⭧ i

 m

The authors of the Application Binary Interface document assume you are familiar with how
nested functions are implemented and are just noting that the calling convention for nested
functions is to pass the static chain in the %r10 register.

4/4

