The theory behind the IHttpFilter interface

=. devblogs.microsoft.com/oldnewthing/20231117-00

November 17, 2023

Raymond Chen

The Windows Runtime has an interface called 1HttpFilter that lets you customize how
HTTP requests are processed. The system has a default implementation called Ht tpBase-
ProtocolFilter, and if it has the features you need, then you're all set:

auto filter = HttpBaseProtocolFilter();
filter.AllowAutoRedirect(false); // disable auto-redirect
auto client = HttpClient(filter);

[Use the client]

But maybe you want to do something beyond that. For example, maybe you want a filter that
injects an extra header into each request. You can implement these extra features by
providing your own implementation of THttpFilter, using the default implementation to do
the heavy lifting.

1/5

https://devblogs.microsoft.com/oldnewthing/20231117-00/?p=109028

// IDL
runtimeclass ExtraHeadersHttpFilter : Windows.Web.Http.Filters.IHttpFilter
{

ExtraHeadersHttpFilter();

void AddHeader(string name, string value);

// Implementation

struct ExtraHeadersHttpFilter : ExtraHeadersHttpFilterT<ExtraHeadersHttpFilter>
{
using namespace Http = winrt::Windows::Web::Http;
private:
// Data members
std: :mutex m_mutex;
std::unordered_map<winrt::hstring, winrt::hstring> m_extraHeaders;
Http::Filters::HttpBaseProtocolFilter m_base =
Http:Filters: :HttpBaseProtocolFilter();

public:
ExtraHeadersHttpFilter() = default;

// Bonus methods for public consumption
void AddHeader (winrt::hstring const& name,
winrt::hstring const& value)
auto lock = std::lock_guard(m_mutex);
m_extraHeaders.insert_or_assign(name, value);

// IHttpFilter methods

winrt::Windows: :Foundation: :IAsyncOperationWithProgress<Http::HttpResponseMessage,
Http: :HttpProgress> SendRequestAsync(Http::HttpRequestMessage request)

{
// Add our bonus headers to the request
{
auto lock = std::lock_guard(m_mutex);
auto headers = request.Headers();
for (auto [name, value] : m_extraHeaders) {
headers.Insert(name, value);
}
}
// And then use default handling for the rest.
return m_base.SendRequestAsync(request);
}

iy

// Consumer
auto filter = ExtraHeadersHttpFilter();
filter.AddHeader (L"X-Contoso", L"Awesome");

2/5

auto client = HttpClient(filter);
[Use the client]

One thing that people like to do is stack filters on top of each other. Maybe you want to use
the ExtraHeadersHttpFilter in conjunction with a CustomRetryHttpFilter. Right now, the
ExtraHeadersHttpFilter hands all of its requests to the default Ht tpBaseProtocolFilter,
so there’s no way to combine it with a CustomRetryHttpFilter.

The way to fix this is to give the ExtraHeadersHttpFilter a constructor that takes another
filter. Requests then pass through that custom filter instead of going to the default filter.

3/5

// IDL

runtimeclass ExtraHeadersHttpFilter : Windows.Web.Http.Filters.IHttpFilter

{
ExtraHeadersHttpFilter();

ExtraHeadersHttpFilter (Windows.Web.Http.Filters.IHttpFilter baseFilter);
void AddHeader(string name, string value);

// Implementation

struct ExtraHeadersHttpFilter : ExtraHeadersHttpFilterT<ExtraHeadersHttpFilter>
{
using namespace Http = winrt::Windows::Web::Http;
private:
// Data members
std::mutex m_mutex;
std::unordered_map<winrt::hstring, winrt::hstring> m_extraHeaders;
Http:Filters::IHttpFilter m_base = Http:Filters::HttpBaseProtocolFilter();

public:
ExtraHeadersHttpFilter() = default;

ExtraHeadersHttpFilter (Http::Filters::IHttpFilter const& baseFilter)
m_base(baseFilter) {}

// Bonus methods for public consumption
void AddHeader(winrt::hstring const& name,
winrt::hstring const& value)
auto lock = std::lock_guard(m_mutex);

m_extraHeaders.insert_or_assign(name, value);

// IHttpFilter methods

winrt::Windows: :Foundation: :IAsyncOperationWithProgress<Http::HttpResponseMessage,
Http::HttpProgress> SendRequestAsync(Http::HttpRequestMessage request)

{
// Add our bonus headers to the request
{
auto lock = std::lock_guard(m_mutex);
auto headers = request.Headers();
for (auto [name, value] : m_extraHeaders) {
headers.Insert(name, value);
}
}
// And then pass the request to the base filter.
return m_base.SendRequestAsync(request);
}

1

4/5

// Consumer

auto retryFilter = CustomRetryHttpFilter(3);

auto headerFilter = ExtraHeadersHttpFilter(retryFilter);
headerFilter.AddHeader (L"X-Contoso", L"Awesome");

auto client = HttpClient(headerFilter);

[Use the client]

The idea behind HTTP filters is that each request passes through the filters before hitting the
wire, and then the response passes through the filters on the way back.

App Filter1 Filter2 FilterN Network
Request — - — — .. > e — 7

0 .
. — — — . e «— Response

In the above diagram, Filter2 is a Retry filter, so when it gets a response, it might decide to
generate a new request and submit that one down the pipeline.

Basically, each filter can treat the remainder of the pipeline as a black box which
conceptually submits the request and produces a result. Your filter doesn’t even have to
submit the request down the pipeline; maybe it sees something wrong with the request and
chooses to generate an error response without actually hitting the wire. Or it might submit the
request to two downstream pipelines for some reason. Or you may have a custom filter for
testing purposes that replays prerecorded Web responses without every submitting them to
the network at all. Each filter can decide whatever it likes.

Bonus chatter: For expository purposes, | didn’t show how to modify the result. You can find
an example of that in the HttpClient sample’s PluginFilter filter.

5/5

https://github.com/microsoft/Windows-universal-samples/blob/ad9a0c4def222aaf044e51f8ee0939911cb58471/Samples/HttpClient/cppwinrt/PlugInFilter.cpp#L32

